Browsing by Author "Song, Binyang"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Data-driven Car Drag Coefficient Prediction with Depth and Normal RenderingsSong, Binyang; Yuan, Chenyang; Permenter, Frank; Arechiga, Nikos; Ahmed, Faez (American Society of Mechanical Engineers, 2024)Generative AI models have made significant progress in automating the creation of 3D shapes, which has the potential to transform car design. In engineering design and optimization, evaluating engineering metrics is crucial. To make generative models performance-aware and enable them to create high-performing designs, surrogate modeling of these metrics is necessary. However, the currently used representations of 3D shapes either require extensive computational resources to learn or suffer from significant information loss, which impairs their effectiveness in surrogate modeling. To address this issue, we propose a new 2D representation of 3D shapes. We develop a surrogate drag model based on this representation to verify its effectiveness in predicting 3D car drag. We construct a diverse dataset of 4,535 high-quality 3D car meshes labeled by drag coefficients computed from computational fluid dynamics simulations to train our model. Our experiments demonstrate that our model can accurately and efficiently evaluate drag coefficients with an R^2 value above 0.84 for various car categories. Our model is implemented using deep neural networks, making it compatible with recent AI image generation tools (such as Stable Diffusion) and a significant step towards the automatic generation of drag-optimized car designs. Moreover, we demonstrate a case study using the proposed surrogate model to guide a diffusion-based deep generative model for drag-optimized car body synthesis. We have made the dataset and code publicly available at https://decode.mit.edu/projects/dragprediction.
- Drag-guided Diffusion Models for Vehicle Image GenerationArechiga, Nikos; Permenter, Frank; Song, Binyang; Yuan, Chenyang (2023-12-15)Denoising diffusion models trained at web-scale have revolutionized image generation. The application of these tools to engineering design holds promising potential but is currently limited by their inability to understand and adhere to concrete engineering constraints. In this paper, we take a step toward the goal of incorporating quantitative constraints into diffusion models by proposing physics-based guidance, which enables the optimization of a performance metric (as predicted by a surrogate model) during the generation process. As a proof-of-concept, we add drag guidance to Stable Diffusion, which allows this tool to generate images of novel vehicles while simultaneously minimizing their predicted drag coefficients.
- Generative Design for Manufacturing: Integrating Generation with Optimization Using a Guided Voxel Diffusion ModelSong, Binyang; Chilukuri, Premith Kumar; Kang, Sungku; Jin, Ran (2024)In digital manufacturing, converting advanced designs into quality products is hampered by manufacturers' limited design knowledge, restricting the adoption and enhancement of innovative solutions. This paper addresses this challenge through a novel generative denoising diffusion model (DDM) trained on historical 3D design data, enabling the creation of voxel-based designs that meet manufacturing standards. By integrating a surrogate model for evaluating the manufacturability of generated designs, the proposed DDM is able to optimize manufacturability during the generative process. This paper takes a leap forward from the predominant 2D focus of existing generative models towards 3D generative design, which not only broadens manufacturers' design capabilities but also accelerates the development of practical and optimized products. We demonstrate the efficacy of this approach via a case study on Microbial Fuel Cell (MFC) anode design, illustrating how this method can significantly enhance manufacturing workflows and outcomes. Our research offers a path for manufacturers to deepen their design expertise and foster innovation in digital manufacturing.
- Human-AI Collaborative Innovation in DesignSong, Binyang; Zhu, Qihao; Luo, Jianxi (2024)Human-AI collaboration (HAIC) is a promising strategy to transform engineering design and innovation, yet how to design artificial intelligence (AI) to boost HAIC remains unclear. Accordingly, this paper provides a new, unified, and comprehensive scheme for classifying AI roles. On this basis, we develop an AI design framework that outlines expected AI capabilities, interactive attributes, and trust enablers across various HAIC scenarios, offering guidance for integrating AI into human teams effectively. We also discuss current advancements, challenges, and prospects for future research.