Browsing by Author "Sorichetta, Alessandro"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Exploring the Relationship between Temporal Fluctuations in Satellite Nightlight Imagery and Human Mobility across AfricaRogers, Grant; Koper, Patrycja; Ruktanonchai, Cori; Ruktanonchai, Nick; Utazi, Edson; Woods, Dorothea; Cunningham, Alexander; Tatem, Andrew J.; Steele, Jessica; Lai, Shengjie; Sorichetta, Alessandro (MDPI, 2023-08-30)Mobile phone data have been increasingly used over the past decade or more as a pretty reliable indicator of human mobility to measure population movements and the associated changes in terms of population presence and density at multiple spatial and temporal scales. However, given the fact mobile phone data are not available everywhere and are generally difficult to access and share, mostly because of commercial restrictions and privacy concerns, more readily available data with global coverage, such as night-time light (NTL) imagery, have been alternatively used as a proxy for population density changes due to population movements. This study further explores the potential to use NTL brightness as a short-term mobility metric by analysing the relationship between NTL and smartphone-based Google Aggregated Mobility Research Dataset (GAMRD) data across twelve African countries over two periods: 2018–2019 and 2020. The data were stratified by a measure of the degree of urbanisation, whereby the administrative units of each country were assigned to one of eight classes ranging from low-density rural to high-density urban. Results from the correlation analysis, between the NTL Sum of Lights (SoL) radiance values and three different GAMRD-based flow metrics calculated at the administrative unit level, showed significant differences in NTL-GAMRD correlation values across the eight rural/urban classes. The highest correlations were typically found in predominantly rural areas, suggesting that the use of NTL data as a mobility metric may be less reliable in predominantly urban settings. This is likely due to the brightness saturation and higher brightness stability within the latter, showing less of an effect than in rural or peri-urban areas of changes in brightness due to people leaving or arriving. Human mobility in 2020 (during COVID-19-related restrictions) was observed to be significantly different than in 2018–2019, resulting in a reduced NTL-GAMRD correlation strength, especially in urban settings, most probably because of the monthly NTL SoL radiance values remaining relatively similar in 2018–2019 and 2020 and the human mobility, especially in urban settings, significantly decreasing in 2020 with respect to the previous considered period. The use of NTL data on its own to assess monthly mobility and the associated fluctuations in population density was therefore shown to be promising in rural and peri-urban areas but problematic in urban settings.
- Geographical distribution of fertility rates in 70 low-income, lower-middle-income, and upper-middle-income countries, 2010-16: a subnational analysis of cross-sectional surveysPezzulo, Carla; Nilsen, Kristine; Carioli, Alessandra; Tejedor-Garavito, Natalia; Hanspal, Sophie E.; Hilber, Theodor; James, William H. M.; Ruktanonchai, Corrine W.; Alegana, Victor; Sorichetta, Alessandro; Wigley, Adelle S.; Hornby, Graeme M.; Matthews, Zoe; Tatem, Andrew J. (2021-06)Background Understanding subnational variation in age-specific fertility rates (ASFRs) and total fertility rates (TFRs), and geographical clustering of high fertility and its determinants in low-income and middle-income countries, is increasingly needed for geographical targeting and prioritising of policy. We aimed to identify variation in fertility rates, to describe patterns of key selected fertility determinants in areas of high fertility. Methods We did a subnational analysis of ASFRs and TFRs from the most recent publicly available and nationally representative cross-sectional Demographic and Health Surveys and Multiple Indicator Cluster Surveys collected between 2010 and 2016 for 70 low-income, lower-middle-income, and upper-middle-income countries, across 932 administrative units. We assessed the degree of global spatial autocorrelation by using Moran's I statistic and did a spatial cluster analysis using the Getis-Ord Gi* local statistic to examine the geographical clustering of fertility and key selected fertility determinants. Descriptive analysis was used to investigate the distribution of ASFRs and of selected determinants in each cluster. Findings TFR varied from below replacement (2.1 children per women) in 36 of the 932 subnational regions (mainly located in India, Myanmar, Colombia, and Armenia), to rates of 8 and higher in 14 subnational regions, located in sub-Saharan Africa and Afghanistan. Areas with high-fertility clusters were mostly associated with areas of low prevalence of women with secondary or higher education, low use of contraception, and high unmet needs for family planning, although exceptions existed. Interpretation Substantial within-country variation in the distribution of fertility rates highlights the need for tailored programmes and strategies in high-fertility cluster areas to increase the use of contraception and access to secondary education, and to reduce unmet need for family planning. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.
- Global holiday datasets for understanding seasonal human mobility and population dynamicsLai, Shengjie; Sorichetta, Alessandro; Steele, Jessica; Ruktanonchai, Corrine W.; Cunningham, Alexander D.; Rogers, Grant; Koper, Patrycja; Woods, Dorothea; Bondarenko, Maksym; Ruktanonchai, Nick W.; Shi, Weifeng; Tatem, Andrew J. (Nature Portfolio, 2022-01-20)Public and school holidays have important impacts on population mobility and dynamics across multiple spatial and temporal scales, subsequently affecting the transmission dynamics of infectious diseases and many socioeconomic activities. However, worldwide data on public and school holidays for understanding their changes across regions and years have not been assembled into a single, open-source and multitemporal dataset. To address this gap, an open access archive of data on public and school holidays in 2010-2019 across the globe at daily, weekly, and monthly timescales was constructed. Airline passenger volumes across 90 countries from 2010 to 2018 were also assembled to illustrate the usage of the holiday data for understanding the changing spatiotemporal patterns of population movements.
- Practical geospatial and sociodemographic predictors of human mobilityRuktanonchai, Corrine W.; Lai, Shengjie; Utazi, Chigozie E.; Cunningham, Alex D.; Koper, Patrycja; Rogers, Grant E.; Ruktanonchai, Nick W.; Sadilek, Adam; Woods, Dorothea; Tatem, Andrew J.; Steele, Jessica E.; Sorichetta, Alessandro (2021-07-28)Understanding seasonal human mobility at subnational scales has important implications across sciences, from urban planning efforts to disease modelling and control. Assessing how, when, and where populations move over the course of the year, however, requires spatially and temporally resolved datasets spanning large periods of time, which can be rare, contain sensitive information, or may be proprietary. Here, we aim to explore how a set of broadly available covariates can describe typical seasonal subnational mobility in Kenya pre-COVID-19, therefore enabling better modelling of seasonal mobility across low- and middle-income country (LMIC) settings in non-pandemic settings. To do this, we used the Google Aggregated Mobility Research Dataset, containing anonymized mobility flows aggregated over users who have turned on the Location History setting, which is off by default. We combined this with socioeconomic and geospatial covariates from 2018 to 2019 to quantify seasonal changes in domestic and international mobility patterns across years. We undertook a spatiotemporal analysis within a Bayesian framework to identify relevant geospatial and socioeconomic covariates explaining human movement patterns, while accounting for spatial and temporal autocorrelations. Typical pre-pandemic mobility patterns in Kenya mostly consisted of shorter, within-county trips, followed by longer domestic travel between counties and international travel, which is important in establishing how mobility patterns changed post-pandemic. Mobility peaked in August and December, closely corresponding to school holiday seasons, which was found to be an important predictor in our model. We further found that socioeconomic variables including urbanicity, poverty, and female education strongly explained mobility patterns, in addition to geospatial covariates such as accessibility to major population centres and temperature. These findings derived from novel data sources elucidate broad spatiotemporal patterns of how populations move within and beyond Kenya, and can be easily generalized to other LMIC settings before the COVID-19 pandemic. Understanding such pre-pandemic mobility patterns provides a crucial baseline to interpret both how these patterns have changed as a result of the pandemic, as well as whether human mobility patterns have been permanently altered once the pandemic subsides. Our findings outline key correlates of mobility using broadly available covariates, alleviating the data bottlenecks of highly sensitive and proprietary mobile phone datasets, which many researchers do not have access to. These results further provide novel insight on monitoring mobility proxies in the context of disease surveillance and control efforts through LMIC settings.