Browsing by Author "Sreng, Chhayly"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ACWA: An AI-driven Cyber-Physical Testbed for Intelligent Water SystemsBatarseh, Feras; Kulkarni, Ajay; Sreng, Chhayly; Lin, Justice; Maksud, Siam (2023-10-05)This manuscript presents a novel state-of-the-art cyber-physical water testbed, namely: The AI and Cyber for Water and Agriculture testbed (ACWA). ACWA is motivated by the need to advance water resources’ management using AI and Cybersecurity experimentation. The main goal of ACWA is to address pressing challenges in the water and agricultural domains by utilising cutting-edge AI and data-driven technologies. These challenges include Cyberbiosecurity, resources’ management, access to water, sustainability, and data-driven decision-making, among others. To address such issues, ACWA consists of multiple topologies, sensors, computational nodes, pumps, tanks, smart water devices, as well as databases and AI models that control the system. Moreover, we present ACWA simulator, which is a software-based water digital twin. The simulator runs on fluid and constituent transport principles that produce theoretical time series of a water distribution system. This creates a good validation point for comparing the theoretical approach with real-life results via the physical ACWA testbed. ACWA data are available to AI and water domain researchers and are hosted in an online public repository. In this paper, the system is introduced in detail and compared with existing water testbeds; additionally, example use-cases are described along with novel outcomes such as datasets, software, and AI-related scenarios.
- Trustworthy Soft Sensing in Water Supply Systems using Deep LearningSreng, Chhayly (Virginia Tech, 2024-05-22)In many industrial and scientific applications, accurate sensor measurements are crucial. Instruments such as nitrate sensors are vulnerable to environmental conditions, calibration drift, high maintenance costs, and degrading. Researchers have turned to advanced computational methods, including mathematical modeling, statistical analysis, and machine learning, to overcome these limitations. Deep learning techniques have shown promise in outperforming traditional methods in many applications by achieving higher accuracy, but they are often criticized as 'black-box' models due to their lack of transparency. This thesis presents a framework for deep learning-based soft sensors that can quantify the robustness of soft sensors by estimating predictive uncertainty and evaluating performance across various scenarios. The framework facilitates comparisons between hard and soft sensors. To validate the framework, I conduct experiments using data generated by AI and Cyber for Water and Ag (ACWA), a cyber-physical system water-controlled environment testbed. Afterwards, the framework is tested on real-world environment data from Alexandria Renew Enterprise (AlexRenew), establishing its applicability and effectiveness in practical settings.