Browsing by Author "Srijanto, Bernadeta R."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- 1 kV GaN-on-Si Quasi-Vertical Schottky RectifierQin, Yuan; Xiao, Ming; Zhang, Ruizhe; Xie, Qingyun; Palacios, Tomás; Wang, Boyan; Ma, Yunwei; Kravchenko, Ivan; Briggs, Dayrl P.; Hensley, Dale K.; Srijanto, Bernadeta R.; Zhang, Yuhao (IEEE, 2023-07)This work demonstrates quasi-vertical GaN Schottky barrier diodes (SBDs) on 6-inch Si substrate with a breakdown voltage (BV) over 1 kV, the highest BV reported in vertical GaN-on-Si SBDs to date. The deep mesa inherently in quasi-vertical devices is leveraged to form a self-aligned edge termination, and the mesa sidewall is covered by the p-type nickel oxide (NiO) as a reduced surface field (RESURF) structure. This novel termination enables a parallel-plane junction electric field of 2.8 MV/cm. The device also shows low turn-on voltage of 0.5 V, and low specific on-resistance of 1.1 m ·cm2. Moreover, the device exhibits excellent overvoltage robustness under the continuous 800 V stress in the unclamped inductive switching test. These results show the good promise of the low-cost vertical GaN-on-Si power diodes.
- Droplet Evaporation on Hot Micro-Structured Superhydrophobic Surfaces: Analysis of Evaporation from Droplet Cap and Base SurfacesHuang, Wenge; He, Xukun; Liu, Cong; Li, Xiaojie; Liu, Yahua; Collier, C. Patrick; Srijanto, Bernadeta R.; Liu, Jiansheng; Cheng, Jiangtao (Elsevier, 2022-04-01)In this study, evaporation of sessile water droplets on hot micro-structured superhydrophobic surfaces is experimentally and theoretically investigated. Water droplets of 4 µL are placed on micro-pillared silicon substrates with the substrate temperature heated up to 120°C. A comprehensive thermal circuit model is developed to analyze the effects of substrate roughness and substrate temperature on the sessile droplet evaporation. For the first time, two components of heat and mass transfer, i.e., one from the droplet cap surface and the other from the droplet base surface, during droplet evaporation are distinguished and systematically studied. As such, the evaporation heat transfer rates from both the droplet cap surface and the interstitial liquid-vapor interface between micropillars at the droplet base are calculated in various conditions. For droplet evaporation on the heated substrates in the range of 40°C – 80°C, the predicted droplet cap temperature matches well with the experimental results. During the constant contact radius mode of droplet evaporation, the decrease of evaporation rate from the droplet base contributes most to the continuously decreasing overall evaporation heat transfer rate, whereas the decrease of evaporation rate from the droplet cap surface is dominant in the constant contact angle mode. The influence of internal fluid flow is considered for droplet evaporation on substrates heated above 100°C, and an effective thermal conductivity is adopted as a correction factor to account for the effect of convection heat transfer inside the droplet. Temperature differences between the droplet base and the substrate base are estimated to be about 2°C, 5°C, 8°C, 13°C and 18°C for droplet evaporation on substrates heated at 40°C, 60°C, 80°C, 100°C, and 120°C, respectively, elucidating the delayed or depressed boiling of water droplets on a heated rough surface due to evaporative cooling.
- Self-Stabilizing Transpiration in Synthetic LeavesShi, Weiwei; Vieitez, Joshua R.; Berrier, Austin S.; Roseveare, Matthew W.; Surinach, Daniel A.; Srijanto, Bernadeta R.; Collier, C. Patrick; Boreyko, Jonathan B. (2019-04-10)Over the past decade, synthetic trees have been engineered to mimic the transpiration cycle of natural plants, but the leaves are prone to dry out beneath a critical relative humidity. Here, we create large-area synthetic leaves whose transpiration process is remarkably stable over a wide range of humidities, even without synthetic stomatal chambers atop the nanopores of the leaf. While the water menisci cannot initially withstand the Kelvin stress of the subsaturated air, they self-stabilized by locally concentrating vapor within the top layers of nanopores that have dried up. Transpiration rates were found to vary nonmonotonically with the ambient humidity because of the tradeoff of dry air increasing the retreat length of the menisci. It is our hope that these findings will encourage the development of large-area synthetic trees that exhibit excellent stability and high throughput for water-harvesting applications.