Browsing by Author "Starnes, B. Alden"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Model Robust Calibration: Method and Application to Electronically-Scanned Pressure TransducersWalker, Eric L.; Starnes, B. Alden; Birch, Jeffrey B.; Mays, James E. (American Institute of Aeronautics and Astronautics, 2010)This article presents the application of a recently developed statistical regression method to the controlled instrument calibration problem. The statistical method of Model Robust Regression (MRR), developed byMays, Birch, and Starnes, is shown to improve instrument calibration by reducing the reliance of the calibration on a predetermined parametric (e.g. polynomial, exponential, logarithmic) model. This is accomplished by allowing fits from the predetermined parametric model to be augmented by a certain portion of a fit to the residuals from the initial regression using a nonparametric (locally parametric) regression technique. The method is demonstrated for the absolute scale calibration of silicon-based pressure transducers.
- A Semiparametric Approach to Dual ModelingRobinson, Timothy J.; Birch, Jeffrey B.; Starnes, B. Alden (Virginia Tech, 2006)In typical normal theory regression, the assumption of homogeneity of variances is often not appropriate. When heteroscedasticity exists, instead of treating the variances as a nuisance and transforming away the heterogeneity, the structure of the variances may be of interest and it is desirable to model the variances. Modeling both the mean and variance is commonly referred to as dual modeling. In parametric dual modeling, estimation of the mean and variance parameters are interrelated. When one or both of the models (the mean or variance model) are misspecified, parametric dual modeling can lead to faulty inferences. An alternative to parametric dual modeling is nonparametric dual modeling. However, nonparametric techniques often result in estimates that are characterized by high variability and ignore important knowledge that the user may have regarding the process. We develop a dual modeling approach [Dual Model Robust Regression (DMRR)], which is robust to user misspecification of the mean and/or variance models. Numerical and asymptotic results illustrate the advantages of DMRR over several other dual model procedures.
- Statistical Calibration and Validation of a Homogeneous Ventilated Wall-Interference Correction Method for the National Transonic FacilityWalker, Eric L. (Virginia Tech, 2005-10-07)Wind tunnel experiments will continue to be a primary source of validation data for many types of mathematical and computational models in the aerospace industry. The increased emphasis on accuracy of data acquired from these facilities requires understanding of the uncertainty of not only the measurement data but also any correction applied to the data. One of the largest and most critical corrections made to these data is due to wall interference. In an effort to understand the accuracy and suitability of these corrections, a statistical validation process for wall interference correction methods has been developed. This process is based on the use of independent cases which, after correction, are expected to produce the same result. Comparison of these independent cases with respect to the uncertainty in the correction process establishes a domain of applicability based on the capability of the method to provide reasonable corrections with respect to customer accuracy requirements. The statistical validation method was applied to the version of the Transonic Wall Interference Correction System (TWICS) recently implemented in the National Transonic Facility at NASA Langley Research Center. The TWICS code generates corrections for solid and slotted wall interference in the model pitch plane based on boundary pressure measurements. Before validation could be performed on this method, it was necessary to calibrate the ventilated wall boundary condition parameters. Discrimination comparisons are used to determine the most representative of three linear boundary condition models which have historically been used to represent longitudinally slotted test section walls. Of the three linear boundary condition models implemented for ventilated walls, the general slotted wall model was the most representative of the data. The TWICS code using the calibrated general slotted wall model was found to be valid to within the process uncertainty for test section Mach numbers less than or equal to 0.60. The scatter among the mean corrected results of the bodies of revolution validation cases was within one count of drag on a typical transport aircraft configuration for Mach numbers at or below 0.80 and two counts of drag for Mach numbers at or below 0.90.