Browsing by Author "Stevens, Ann M."
Now showing 1 - 20 of 96
Results Per Page
Sort Options
- Acyl-Homoserine Lactone Recognition and Response Hindering the Quorum-Sensing Regulator EsaRSchu, Daniel J.; Scruggs, Jessica M.; Geissenger, Jared S.; Michel, Katherine G.; Stevens, Ann M. (Public Library of Science, 2014-09-19)During quorum sensing in the plant pathogen Pantoea stewartii subsp. stewartii, EsaI, an acyl-homoserine lactone (AHL) synthase, and the transcription factor EsaR coordinately control capsular polysaccharide production. The capsule is expressed only at high cell density when AHL levels are high, leading to inactivation of EsaR. In lieu of detailed structural information, the precise mechanism whereby EsaR recognizes AHL and is hindered by it, in a response opposite to that of most other LuxR homologues, remains unresolved. Hence, a random mutagenesis genetic approach was designed to isolate EsaR* variants that are immune to the effects of AHL. Error-prone PCR was used to generate the desired mutants, which were subsequently screened for their ability to repress transcription in the presence of AHL. Following sequencing, site-directed mutagenesis was used to generate all possible mutations of interest as single, rather than multiple amino acid substitutions. Eight individual amino acids playing a critical role in the AHL-insensitive phenotype have been identified. The ability of EsaR* variants to bind AHL and the effect of individual substitutions on the overall conformation of the protein were examined through in vitro assays. Six EsaR* variants had a decreased ability to bind AHL. Fluorescence anisotropy was used to examine the relative DNA binding affinity of the final two EsaR* variants, which retained some AHL binding capability but remained unresponsive to it, perhaps due to an inability of the N-terminal domain to transduce information to the C-terminal domain.
- Amino Acid Residues in LuxR Critical for its Mechanism of Transcriptional Activation during Quorum SensingTrott, Amy Elizabeth (Virginia Tech, 2000-07-17)Vibrio fischeri, a symbiotic bioluminescent bacterium, serves as one of the best understood model systems for a mechanism of cell-density dependent bacterial gene regulation known as quorum sensing. During quorum sensing in V. fischeri, an acylated homoserine chemical signal (autoinducer) is synthesized by the bacteria and used to sense their own species in a given environment. As the autoinducer levels rise, complexes form between the autoinducer and the N-terminal domain of a regulatory protein, LuxR. In response to autoinducer binding, LuxR is believed to undergo a conformational change that allows the C-terminal domain to activate transcription of the luminescence or lux operon. To further understand the mechanism of LuxR-dependent transcriptional activation of the lux operon, PCR-based site-directed mutagenesis procedures have been used to generate alanine-substitution mutants in the C-terminal forty-one amino acid residues of LuxR, a region that has been hypothesized to play a critical role in the activation process. An in vivo luminescence assay was first used to test the effects of the mutations on LuxR-dependent activation of the lux operon in recombinant Escherichia coli. Luciferase levels present in cell extracts obtained from these strains were also quantified and found to correlate with the luminescence results. Eight strains encoding altered forms of LuxR exhibited a "dark" phenotype with luminescence output less than 50% and luciferase levels less than 50% of the wildtype control strain. Western immunoblotting analysis with cell extracts from the luminescence and luciferase assays verified that the altered forms of LuxR were expressed at levels approximately equal to wildtype. Therefor, Low luminescence and luciferase levels could be the result of a mutation that either affects the ability of LuxR to recognize and bind its DNA target (the lux box) or to establish associations with RNA polymerase (RNAP) at the lux operon promoter necessary for transcriptional initiation. A third in vivo assay was used to test the ability of the altered forms of LuxR to bind to the lux box (DNA binding assay/repression). All of the LuxR variants exhibiting the "dark" phenotype in the luminescence and luciferase assay were also found to be unable to bind to the lux box in the DNA binding assay. Therefore, it can be concluded that the alanine substitutions made at these positions affect the ability of LuxR to bind to the lux box in the presence and absence of RNA polymerase. Another class of mutants exhibited wildtype phenotypes in the luminescence and luciferase assays but were unable to bind to the lux box in the DNA binding assay. The alanine substitutions made at these amino acid residues may be making contacts with RNAP that are important for maintaining the stability of the DNA binding region of LuxR. Alanine substitutions made at these positions have a defect in DNA binding at the promoter of the lux operon only in the absence of RNAP. None of the alanine substitutions made in the C-terminal forty-one amino acids of LuxR were found to affect activation of transcription of the lux operon without also affecting DNA binding. Taken together, these results support the conclusion that the C-terminal forty-one amino acids of LuxR are important for DNA recognition and binding of the lux box rather than positive control of the process of transcription initiation.
- Analysis of the in planta transcriptome expressed by the corn pathogen Pantoea stewartii subsp. stewartii via RNA-SeqPackard, Holly; Burke, Alison K.; Jensen, Roderick V.; Stevens, Ann M. (PeerJ, 2017-04-27)Pantoea stewartii subsp. stewartii is a bacterial phytopathogen that causes Stewart’s wilt disease in corn. It uses quorum sensing to regulate expression of some genes involved in virulence in a cell density-dependent manner as the bacterial population grows from small numbers at the initial infection site in the leaf apoplast to high cell numbers in the xylem where it forms a biofilm. There are also other genes important for pathogenesis not under quorum-sensing control such as a Type III secretion system. The purpose of this study was to compare gene expression during an in planta infection versus either a pre-inoculum in vitro liquid culture or an in vitro agar plate culture to identify genes specifically expressed in planta that may also be important for colonization and/or virulence. RNA was purified from each sample type to determine the transcriptome via RNA-Seq using Illumina sequencing of cDNA. Fold gene expression changes in the in planta data set in comparison to the two in vitro grown samples were determined and a list of the most differentially expressed genes was generated to elucidate genes important for plant association. Quantitative reverse transcription PCR (qRT-PCR) was used to validate expression patterns for a select subset of genes. Analysis of the transcriptome data via gene ontology revealed that bacterial transporters and systems important for oxidation reduction processes appear to play a critical role for P. stewartii as it colonizes and causes wilt disease in corn plants.
- Analysis of the Quorum Sensing Regulons of Vibrio parahaemolyticus BB22 and Pantoea stewartii subspecies stewartiiBurke, Alison Kernell (Virginia Tech, 2015-12-07)Quorum sensing is utilized by many different proteobacteria, including the two studied for this dissertation work, Vibrio parahaemolyticus and Pantoea stewartii subsp. stewartii. V. parahaemolyticus causes acute gastroenteritis in people who eat contaminated raw or undercooked shellfish. It is found in warmer marine waters and in rare cases, causes systemic infections when bacteria enter the body through open wounds. P. stewartii, on the other hand, is a phytopathogen that causes Stewart's wilt in maize. It is found in soil or the mid-gut of the corn flea beetle, its insect vector. Both V. parahaemolyticus and P. stewartii utilize quorum sensing to control their pathogenicity. Quorum sensing enables coordinate gene expression across a bacterial population. The V. parahaemolyticus quorum-sensing system utilizes the master regulator OpaR, which is homologous to the V. harveyii LuxRVh and the P. stewartii system contains EsaR which is homologous to the V. fischeri LuxRVf regulator. While the two systems differ in the molecular details of their mechanistic control, they are both forms of cell density dependent regulation that are either directly or indirectly controlled by small signaling molecules. Three different signaling molecules are found in V. parahaemolyticus, and only one signal is used in P. stewartii. The focus of this dissertation has been on understanding the downstream targets of OpaR and EsaR in their respective quorum-sensing systems. Prior to this work, it was known that when OpaR is not present or is nonfunctional V. parahaemolyticus changes from an opaque to a translucent colony morphology phenotype and the cells also become swarm proficient and more pathogenic. The complete genome of the V. parahaemolyticus BB22OP strain was assembled and annotated (Chapter 2). RNA-Seq was then used to analyze the transcriptomes of OpaR-active and OpaR-deficient strains of V. parahaemolyticus and identify genes that were regulated via quorum sensing (Chapter 3). Similarly, P. stewartii was also analyzed using RNA-Seq to identify genes controlled by EsaR in the transcriptome that had not been detected through prior proteomic studies. The initial RNA-Seq work confirmed the control of some previously identified direct targets of EsaR and newly identified ten other genes also directly controlled by EsaR (Chapter 4). Two direct targets of EsaR, rcsA and lrhA, became the focus of additional studies to further define the hierarchy of gene control downstream of the quorum-sensing regulator EsaR. RcsA controls capsule production, while LrhA controls motility and adhesion in P. stewartii. The regulons of rcsA and lrhA were defined by RNA-Seq, which also revealed multi-level control of rcsA gene expression (Chapter 5). Tight coordinated and temporal control of virulence factors is important for successful disease progression by pathogens. This dissertation work aims to enable a better understanding of the quorum-sensing hierarchy of genetic control in V. parahaemolyticus and P. stewartii.
- Analysis of the Regulons Controlled by Transcriptional Regulators LuxR and LitR in Vibrio fischeriQin, Nan (Virginia Tech, 2008-07-22)Quorum sensing is a bacterial signaling system that controls gene expression in a population density-dependent manner. In Gram-negative proteobacteria, the cell density control of luminescence was first observed in the symbiotic marine bacterium Vibrio fischeri and this system is one of the best studied quorum sensing systems. Two-dimensional sodium dodecyl sulfate-polyacrylamide (2D-SDS) gel electrophoresis analysis previously identified several non-Lux proteins in V. fischeri MJ-100 whose expression was dependent on LuxR and 3-oxo-hexanoyl-L-homoserine lactone (3-oxo-C6-HSL). A lacZ reporter was used to show that the promoters for qsrP, acfA, and ribB were directly activated via LuxR-3-oxo-C6-HSL in recombinant Escherichia coli. The sites of transcription initiation were established via primer extension analysis. Based on the position of the lux box-binding site near position â 40, all three promoters appear to have a class II-type promoter structure. Real-time reverse transcription-PCR was used to study the temporal expression of qsrP, acfA, and ribB during the exponential and stationary phases of growth, and electrophoretic mobility shift assays were used to compare the binding affinities of LuxR to the promoters under investigation. In order to fully characterize the LuxR regulon in V. fischeri ES114, microarray analysis was performed in the Greenberg lab (University of Washington) and 18 LuxR-3-oxo-C6-HSL regulated promoters were found including 2 genes (qsrP and acfA) identified previously in MJ-100 in addition to the well-studied lux operon. In collaboration with them, full-length purified LuxR protein was used to show direct interaction between the LuxR protein and 7 genes/operons newly identified out of 13 genes/operons examined. The binding affinity between LuxR proteins and those genes was also measured. Based on the sequence of the lux boxes of the known genes regulated by LuxR and LitR, a position specific weight matrix (PSWM) was created and used to search through the intergenic regions of the V. fischeri ES114 genome. Some potential LuxR and LitR-regulated genes with high score were tested experimently to confirm direct activation. For the LuxR regulon, these possible LuxR-regulated promoters were cloned into a lacZ reporter and tested for their LuxR dependence. Beyond the genes found in microarray, the promoter of the intergenic region VFA0658-0659 was found to be activated by LuxR and 3-oxo-C6-HSL. For the LitR regulon, two LitR-regulated genes found in the microarray were also identified using PSWM and confirmed by real-time PCR to be dependent on LitR for expression. EMSA experiments showed that LitR can specifically bind to the litR boxes of LitR-regulated genes, litR and VF0170 which confirmed that the regulation is direct.
- Analysis of TpeL secretion in Clostridium perfringensSaadat, Angela P. (Virginia Tech, 2021-01-11)Clostridia are a class of gram-positive, anaerobic bacteria best known for their powerful toxins. These bacteria cause many diseases that are difficult to treat and often deadly, including colitis, botulism, tetanus and gas gangrene. These diseases are caused by the secretion of specific toxins, though current treatments do little to nullify these toxins and better therapeutics are urgently needed. The development of such treatments is hindered by our poor understanding of clostridial toxin secretion, which is itself hindered by the innate characteristics of these bacteria that make them difficult to study. Of the pathogenic clostridia, Clostridium perfringens is relatively easy to culture and straddles the line between pathogen and commensal, making it an attractive model organism for studying clostridial toxin secretion. C. perfringens is a bacterium found naturally in soils and in the gastrointestinal tracts of humans and animals that can also cause disease. C. perfringens produces more toxins than any other bacterium, and these toxins generally function as a means to lyse host cells so the bacteria may scavenge their intracellular nutrients. The primary focus of the research in this dissertation is the secretion of the toxin TpeL by a small membrane protein, TpeE. Preceding the study of TpeL secretion were two other projects, which are discussed in Chapters 2 and 3. Chapter 2 describes an experimental plan to characterize the genes involved in muscle cell adherence as a very basic model to mimic skeletal muscle attachment in gas gangrene. Like many other bacteria, C. perfringens can produce T4P, extracellular filaments that are synthesized, extended and retracted from the cell by the concerted effort of many proteins. Results from initial, proof-of-concept adherence assays are presented and demonstrate that statistical significance was lost when data were compiled. Despite efforts to troubleshoot this, robust test output was not achieved and the project was discontinued November 2016. Chapter 3 describes the experimental plan and initial findings of a project where a link between T4P and virulence was investigated. Such a link had been demonstrated in the T4P model organism Pseudomonas aeruginosa, where PilT, the T4P retraction ATPase, was shown to sense surface attachment and initiate virulence. In C. perfringens, PilT demonstrates a number of characteristics that lead us to think it may also function as a sensor, coordinating host cell attachment and colonization by alternatively associating with PilM and FtsA. We developed an experimental plan to determine if PilT binds both PilM and FtsA by co-immunoprecipitation with live-cell fluorescence imaging. However, we were unable to demonstrate the functionality of a PilT-fluorescent protein fusion with an anti-pilin ELISA assay, nor were we able to detect PilT or FtsA overexpression by immunoblotting, and the project was discontinued in November 2017. In retrospect, these experiments likely failed because of an inactive promoter region in the overexpression plasmid. Though clostridial diseases require secreted toxins, their secretion mechanisms are largely uncharacterized, and Chapter 4 describes the investigation of a potentially conserved toxin secretion mechanism. TpeL is a recently discovered C. perfringens toxin that is associated with chicken necrotic enteritis, a disease that costs the poultry industry billions of dollars each year. TpeL belongs to a subset of clostridial toxins characterized by their large size and conserved structure, the large clostridial toxins. The gene for tpeL and nearly all other large clostridial toxins lies next to a gene encoding a small membrane protein. Since bacterial genes with a shared function are often found in close proximity, it is suspected that these small proteins share some function with these toxins, and another research group has shown the two large clostridial toxins in C. difficile need this small membrane protein for their secretion. We isolated the small membrane protein and toxin genes tpeE and tpeL from native regulatory elements and overexpressed them heterologously in a different strain of C. perfringens. By immunoblotting, we found rapid TpeL secretion requires TpeE, and secretion was abolished when C-terminal sections of either protein were mutated. By immunoblotting and growth curve analyses, we found that TpeE is maintained at low concentrations and is not lethal in C. perfringens, but was expressed to high levels and was lethal in Escherichia coli. Our results, in conjunction with those from other research groups strongly suggest a conserved secretion mechanism dependent on small, membrane proteins. Our findings further the understanding of toxin secretion, a key step toward novel and effective clostridial disease strategies. Chapter 5 describes the outcome of an experimental approach where tpeE and tpeL were expressed from two different expression system plasmids. A number of off-target effects materialized with this approach which confounded our experimental results. The predominantly confounding effect was off-target protein secretion, found by immunoblotting to be associated with one of the expression systems. Despite efforts to minimize these effects, it became clear results from this approach would be uninterpretable and the two-plasmid approach for TpeE and TpeL expression was abandoned. A cut-and-paste strategy using the historical, single inducible expression system was implemented in its place. The exact mechanism for TpeL secretion by the small membrane protein TpeE is unclear. Chapter 6 outlines some hypotheses towards this mechanism and a nascent plan to uncover it. An efficient starting point is to determine if the two proteins are in close enough proximity to one another to interact in vivo. We developed a strategy to determine this by crosslinking and immunoblotting, using the size differential between the proteins to our advantage. Though the results of this study were confounded by an inability of TpeL to solubilize in buffer, the groundwork is laid for future endeavors.
- Analyzing the Transcriptomes of Two Quorum-Sensing Controlled Transcription Factors, RcsA and LrhA, Important for Pantoea stewartii VirulenceBurke, Alison K.; Duong, Duy An; Jensen, Roderick V.; Stevens, Ann M. (Public Library of Science, 2015-12-23)The Gram-negative proteobacterium Pantoea stewartii subsp. stewartii causes wilt disease in corn plants. Wilting is primarily due to bacterial exopolysaccharide (EPS) production that blocks water transport in the xylem during the late stages of infection. EsaR, the master quorum-sensing (QS) regulator in P. stewartii, modulates EPS levels. At low cell densities EsaR represses or activates expression of a number of genes in the absence of its acyl homoserine lactone (AHL) ligand. At high cell densities, binding of AHL inactivates EsaR leading to derepression or deactivation of its direct targets. Two of these direct targets are the key transcription regulators RcsA and LrhA, which in turn control EPS production and surface motility/adhesion, respectively. In this study, RNA-Seq was used to further examine the physiological impact of deleting the genes encoding these two second-tier regulators. Quantitative reverse transcription PCR (qRT-PCR) was used to validate the regulation observed in the RNA-Seq data. A GFP transcriptional fusion reporter confirmed the existence of a regulatory feedback loop in the system between LrhA and RcsA. Plant virulence assays carried out with rcsA and lrhA deletion and complementation strains demonstrated that both transcription factors play roles during establishment of wilt disease in corn. These efforts further define the hierarchy of the QS-regulated network controlling plant virulence in P. stewartii.
- Application of Molecular Techniques to the Characterization of a Nitrifying Bioaugmentation CultureFouratt, Melissa Amanda (Virginia Tech, 2001-05-18)Nitrification is the biological process whereby ammonia is converted first to nitrite by ammonia-oxidizing bacteria, and then the nitrite is subsequently converted to nitrate by nitrite-oxidizing bacteria. Ammonia and nitrite levels are closely monitored during treatment of wastewater due to their toxicity to other biological processes. Sybron Chemicals, Inc., is a company that manufactures a nitrifying bioaugmentation culture (1010N) that is used to enhance the naturally occurring levels of biological nitrification. The microbial population of the 1010N product has been examined using a combination of conventional bacteriological methods and modern molecular techniques, with the goal of developing nucleic acid probes that can be used to detect the product in an environmental sample. Small regions of the 16S rRNA genes of the bacteria in 1010N (and two new nitrifying enrichment cultures) were amplified via the polymerase chain reaction (PCR) and analyzed via temperature gradient gel electrophoresis (TGGE). TGGE is a procedure that allows for separation and visualization of individual PCR products that are the same size, based on differences in their sequence. Two of the predominant PCR products in 1010N were purified from the TGGE gel matrix, reamplified via PCR, and sequenced to allow for phylogenetic analysis and nucleic acid probe design. Coincidentally, two strains (NS500-9 and MPN2) that had been isolated from the 1010N mixed consortium and grown in pure culture were found, via TGGE, to have identical 16S rRNA sequences to the PCR products under investigation. Nearly the full-length 16S rRNA genes from these two organisms were PCR amplified, cloned, and sequenced in order to provide a basis for more accurate phylogenetic analysis. The two dominant organisms in the 1010N product, NS500-9 and MPN2, were thereby found to be most closely related to Nitrosomonas and Nitrobacter, respectively, in the existing database. Using the nucleic acid sequences of the cloned DNA, organism-specific DNA probes were designed for both NS500-9 and MPN2. Unfortunately, difficulties were encountered in using the probes to monitor 1010N activity levels via quantitative dot blot hybridizations (rRNA-DNA). Therefore, efforts were redirected to using the TGGE semi-quantitatively with an internal PCR standard (Brüggeman, et al., 2000) to estimate original cell numbers of 1010N within a mixed consortium. This method was not applicable to our system due to substantial preferential binding of the primers to template other than the standard. Samples from a laboratory-scale bioreactor, bioaugmented with 1010N, were used in an attempt to correlate an increase in activity with a detectable shift in population via TGGE. No detectable shift in population was detected in these samples even though the system exhibited increased levels of nitrification. Therefore, the sensitivity of the TGGE system was also examined by determining the limits of detection when 1010N was present in activated sludge. In both whole cell spiking experiments and genomic DNA spiking experiments, it was found that 1010N must be present at a level of at least 5% of the total population in order to be detected. While this provides some information about microbial populations, in order to evaluate the biological activity of a system, nucleic acid probes should be used in a rRNA based study.
- Biochemical and genetic characterization of mercaptopyruvate sulfurtransferase and paralogous putative sulfurtransferases of Escherichia coliJutabha, Promjit (Virginia Tech, 2001-06-11)Sulfurtransferases, including mercaptopyruvate sulfurtransferase and rhodanese, are widely distributed in living organisms. Mercaptopyruvate sulfurtransferase and rhodanese catalyze the transfer of sulfur from mercaptopyruvate and thiosulfate, respectively, to sulfur acceptors such as thiols or cyanide. There is evidence to suggest that rhodanese can mobilize sulfur from thiosulfate for in vitro formation of iron-sulfur clusters. Additionally, primary sequence analysis reveals that MoeB from some organisms, as well as ThiI of Escherichia coli, contain a C-terminal sulfurtransferase domain. MoeB is required for molybdopterin biosynthesis, whereas ThiI is necessary for biosynthesis of thiamin and 4-thiouridine in transfer ribonucleic acid. These observations led to the hypothesis that sulfurtransferases might be involved in sulfur transfer for biosynthesis of some sulfur-containing cofactors (e.g., biotin, lipoic acid, thiamin and molybdopterin). Results of a BLAST search revealed that E. coli has at least eight potential sulfurtransferases, besides ThiI. Previously, a glpE-encoded rhodanese of E. coli was characterized in our laboratory. In this dissertation, a mercaptopyruvate sulfurtransferase and corresponding gene (sseA) of E. coli were identified. In addition, the possibility that mercaptopyruvate sulfurtransferase could participate or work in concert with a cysteine desulfurase, IscS, in the biosynthesis of cofactors was examined. Cloning of the sseA gene and biochemical characterization of the corresponding protein were used to show that SseA is a mercaptopyruvate sulfurtransferase of E. coli. A strain with a chromosomal insertion mutation in sseA was constructed in order to characterize the physiological function of mercaptopyruvate sulfurtransferase. However, the lack of SseA did not result in a discernable phenotypic change. Redundancy of sulfurtransferases in E. coli may prevent the appearance of a phenotypic change due to the loss of a single sulfurtransferase. Subsequently, other paralogous genes for putative sulfurtransferases, including ynjE and yceA, were cloned. Strains with individual deletions of the chromosomal ynjE and yceA genes were also constructed. Finally, strains with multiple deficiency in potential sulfurtransferase genes, including sseA, ynjE and glpE, as well as iscS, were created. However, no phenotype associated with combinations of sseA, glpE and/or ynjE deficiency was identified. Therefore, the physiological functions of mercaptopyruvate sulfurtransferase and related sulfurtransferases remain unknown.
- Characterization of AgaR and YihW, Members of the DeoR Family of Transcriptional Regulators, and GlpE, a Rhodanese Belonging to the GlpR Regulon, Also a Member of the DeoR FamilyRay, William Keith (Virginia Tech, 1999-08-02)AgaR, a protein in Escherichia coli thought to control the metabolism of N-acetylgalactosamine, is a member of the DeoR family of transcriptional regulators. Three transcriptional promoters within a cluster of genes containing the gene for AgaR were identified, specific for agaR, agaZ and agaS, and the transcription start sites mapped. Transcription from these promoters was specifically induced by N-acetylgalactosamine or galactosamine, though K-12 strains lacked the ability to utilize these as sole sources of carbon. The activity of these promoters was constitutively elevated in a strain in which agaR had been disrupted confirming that the promoters are subject to negative regulation by AgaR. AgaR-His6, purified using immobilized metal affinity chromatography, was used for DNase I footprint analysis of the promoter regions. Four operator sites bound by AgaR were identified. A putative consensus binding sequence for AgaR was proposed based on these four sites. In vivo and in vitro analysis of the agaZ promoter indicated that this promoter was activated by the cAMP-cAMP receptor protein (CRP). Expression from the aga promoters was less sensitive to catabolite repression in revertants capable of N-acetylgalactosamine utilization, suggesting that these revertants have mutation(s) that result in an elevated level of inducer for AgaR. A cluster of genes at minute 87.7 of the E. coli genome contains a gene that encodes another member of the DeoR family of transcriptional regulators. This protein, YihW, is more similar to GlpR, transcriptional regulator of sn-glycerol 3-phosphate metabolism in E. coli, than other members of the DeoR family. Despite the high degree of similarity, YihW lacked the ability to repress PglpK, a promoter known to be controlled by GlpR. A variant of YihW containing substitutions in the putative recognition helix to more closely match the recognition helix of GlpR was also unable to repress PglpK. Transcriptional promoters identified in this cluster of genes were negatively regulated by YihW. Regulation of genes involved in the metabolism of sn-glycerol 3-phosphate in E. coli by GlpR has been well characterized. However, the function of a protein (GlpE) encoded by a gene cotranscribed with that for GlpR was unknown prior to this work. GlpE was identified as a single-domain, 12-kDa rhodanese (thiosulfate:cyanide sulfurtransferase). The enzyme was purified to near homogeneity and characterized. As shown for other characterized rhodaneses, kinetic analysis revealed that catalysis occurs via an enzyme-sulfur intermediate utilizing a double-displacement mechanism requiring an active-site cysteine. Km (SSO₃²⁻) and Km (CN⁻) were determined to be 78 mM and 17 mM, respectively. The native molecular mass of GlpE was 22.5 kDa indicating that GlpE functions as a dimer. GlpE exhibited a kcat of 230 s-1. Thioredoxin, a small multifunctional dithiol protein, served as sulfur-acceptor substrate for GlpE with an apparent Km of 34 mM when thiosulfate was near its Km, suggesting thioredoxin may be a physiological substrate.
- Characterization of Gene Expression During Adenosine 3':5'-Cyclic Monophosphate Induced Neuroendocrine Differentiation in Human Prostatic AdenocarcinomaGoodin, Jeremy Lee (Virginia Tech, 2002-04-03)The LNCaP cell line is a versatile and useful model that is suitable for the study of human prostate cancer in vitro. The elevation of LNCaP intracellular cAMP levels through the addition of membrane permeable cAMP analogues, phosphodiesterase inhibitors, adenylate cyclase activators, or components of the cAMP signal transduction pathway can induce reversible neuroendocrine differentiation. Elucidation of those genes that are differentially expressed between undifferentiated prostate cancer cells and prostate cancer cells that have been induced to differentiate may present new insights for the molecular mechanisms governing neuroendocrine differentiation, early detection of prostate cancer, and/or potential targets for gene therapy. In this study, differential display PCR was used to identify 226 differentially expressed PCR products. Twelve of the differential display PCR products were confirmed by Northern blot analysis and cloned. DNA sequencing and database comparisons were performed. Among the differentially expressed genes, the human ribosomal S3a gene was identified as down regulated in response to LNCaP differentiation. In order to better ascertain the mechanism by which HRS3a gene expression is decreased during differentiation, the promoter region for this gene was analyzed. Electrophoretic mobility shift assay, antibody supershift assays, site-directed mutagenesis, and luciferase reporter gene analysis were employed to authenticate the roles of several transcription factors in the regulation of the HRS3a gene. Two cyclic AMP response elements, a Sp1 element and a GA-binding protein element, were involved in the regulation of HRS3a gene expression. In order to ascertain the effect of HRS3a down regulation in LNCaP cells, antisense phosphorothioate oligonucleotides were designed to inhibit HRS3a gene expression. Treatment of LNCaP cells with antisense HRS3a oligonucleotides did not influence cAMP induced neuroendocrine differentiation but antisense treatment did result in a decrease in LNCaP cell growth. In addition, it was determined that morphological changes associated with cAMP induced differentiation of LNCaP cells from the epithelial to the neuroendocrine state may not require alterations in gene expression nor the expression of novel proteins.
- Characterization of proteins involved in Bacillus subtilis spore formation and germinationBarat, Bidisha (Virginia Tech, 2020-05-22)Members of the Bacillus genus, when faced with unfavorable environmental conditions such as depletion of nutrients, undergo an asymmetric division process ultimately leading to the formation of an endospore. In some instances, the spore serves as the infectious agent of an associated disease; such is the case with the spore of Bacillus anthracis and the disease anthrax. Spores are resistant to a variety of unfavorable environmental conditions including traditional decontamination techniques. Spore resistance is due to the formation of specialized structures that contribute to spore dormancy through several mechanisms, including maintenance of the dehydrated state of the spore core. Spore germination is a rapid process resulting in the irrevocable transformation of the non-metabolizing dehydrated spore into a vegetative outgrowing bacterium. The exact mechanism by which individual proteins function in the germination pathway remains unknown. In this study, we have focused on the roles of putative ion transporters and other germination-active proteins in affecting spore formation and germination. Metal ions can activate enzymes during the sporulation process and/or be factors in spore resistance properties. In B. subtilis, six proteins within the spore membrane proteome (ChaA, YcnL,YflS, YloB, YugS, ZnuA) are similar to components of known cation transport systems. These proteins may play roles in the accumulation of ions during sporulation and/or the release of ions during germination. Multiple mutants altered in the putative ion transporter genes were generated, and the effects of these mutations were analyzed. All strains containing a yloB deletion showed a decrease in heat resistant cfu/ml, and >40% of the spores appeared phase dark during microscopy, indicating the formation of unstable spores. Studies were conducted to quantify the amounts of individual ions in phase-bright spores using atomic emission spectroscopy and to analyze the rate at which ions are released from germinating spores. The transport of Ca2+ from mother cell to forespore during sporulation seems to be affected in the yloB deletion mutant. This Ca2+ deficit apparently renders the spores unstable, heat sensitive, and partially germination defective, suggesting that a high-affinity transporter for Ca2+ is nonfunctional. To better understand the underlying mechanisms of germination, a high-throughput genetic screening method called transposon sequencing was used. This analysis identified genes that had not been previously implicated in germination. To investigate their functions, a number of functional assays of all the Ger mutant strains were performed that indicated a delay in stage I of germination. The mutant strains showed significant reduction in germination efficiency with L-valine: about 50% of the population failed to initiate germination suggesting a defect in the GerA-mediated response. The expression of gerA was studied using a lacZ transcriptional fusion followed by quantitative western blot analyses to determine abundance of GerA in mutant strains. The mutants were classified based upon normal or decreased gerA transcription and normal or reduced GerA protein. Further work involves understanding the functions of the identified genes and their correlation to the GerA receptor. Insight into ion transporters of spore-forming bacteria and understanding the germination apparatus may lead to promising new applications, detection methods, or therapeutics for spores, and may allow the development of better spore decontamination procedures.
- Characterization of symbiotically important processes in Sinorhizobium melilotiZatakia, Hardik M. (Virginia Tech, 2015-09-15)Bacteria perform biological nitrogen fixation (BNF) which leads to conversion of N2 to ammonia. One of the best studied models of BNF is the symbiotic association of Sinorhizobium meliloti - Medicago sativa (alfalfa). Since alfalfa is a major source of animal feed and the fourth largest crop grown in the USA, enhanced understanding of this symbiosis can have implications for increasing crop yields, reducing environmental contamination and food costs. Studies discussed here focus on two symbiotically important bacterial traits, type IVb pili and chemotaxis. Chapter 2 characterizes S. meliloti type IVb pili encoded by flp-1 and establishes their role in nodulation. Bundle-forming pili were visualized in wild-type cells, while cells lacking pilA1, the pilin-encoding gene, showed an absence of pili. Competitive nodulation assays with alfalfa concluded that cells lacking pili had a significant nodulation defect. Regulation of pilA1 expression via a quorum sensing regulator, ExpR, was confirmed. Chapter 3 describes the role of the flp-2 cluster in establishing symbiosis. PilA2 is a pilin subunit encoded from flp-2. The pilA2 deletion strain was defective in nodulation by 31% as compared to the wild type. A non-significant change in nodulation was seen in pilA1pilA2 strain. Thus, both flp-1 and flp-2 have a significant role in establishing symbiosis. Chapter 4 focuses on the deviations of S. meliloti chemotaxis from the enterobacterial paradigm. Transcriptional fusions showed that S. meliloti chemoreceptors (MCPs) are class III genes and regulated by FlbT. Quantitative immunoblots determined the cellular amounts of chemoreceptors. Chemoreceptors were grouped in three classes; high, low, and extremely-low abundance, similar to the high and low abundance chemoreceptors of Escherichia coli. Importantly, the MCP:CheA ratio in an S. meliloti cell was observed to be 37:1, similar to that in Bacillus subtilis of 24:1, but quite different from that in E. coli of 3.4:1. In conclusion, our data indicates that soil bacteria may have optimized their chemotaxis system based on their milieu, which is different from enteric bacteria. These studies have enhanced our understanding of two symbiotically important processes in S. meliloti, and pave the way for future manipulations of the system to increase symbiosis and reduce our dependence on synthetic fertilizers.
- Characterization of the Bacillus anthracis SleL Protein and its Role in Spore GerminationLambert, Emily Anne (Virginia Tech, 2010-03-24)Bacillus anthracis is a spore-forming bacterium that is included on the list of select agents compiled by the Centers for Disease Control. When a B. anthracis spore germinates, a protective layer of peptidoglycan known as the cortex must be depolymerized by germination-specific lytic enzymes (GSLEs) before the bacterium can become a metabolically active vegetative cell. By exploiting cortex lytic enzymes it may be possible to control germination. This could be beneficial in elucidating ways to enhance current decontamination methods. In this work we created in-frame deletion mutants to study not only the role of one GSLE, SleL, but by creating multi-deletion mutants, we were able to analyze how the protein cooperates with other lytic enzymes to efficiently hydrolyze the cortical PG. We determined that SleL plays an auxiliary role in complete peptidoglycan hydrolysis, secondary to cortex lytic enzymes CwlJ1, CwlJ2, and SleB. The loss of sleL results in a delay in the loss of optical density during germination. However, spores are capable of completing germination as long as CwlJ1 or SleB remains active. HPLC analysis of muropeptides collected from B. anthracis sleL strains indicates that SleL is an N-acetylglucosamidase that acts on cortical PG to produce small muropeptides which are quickly released from the germinating spore. By analyzing the in vitro and in vivo activities of SleL we confirmed the enzymatic activity of the protein, characterized its substrates, and studied the roles of its putative LysM domains in substrate binding and spore-protein association. We were able to show that purified SleL is capable of depolymerizing partially digested spore PG resulting in the production of N-acetylglucosaminidase products that are readily released as small muropeptides. In vitro, loss of the LysM domain(s) decreases hydrolysis effectiveness. The reduction in hydrolysis is likely due to LysM domains being involved in substrate recognition and PG binding. When the SleL derivatives are expressed in vivo those proteins lacking one or both LysM domains do not associate with the spore, suggesting that LysM is involved in directing protein localization.
- Characterization of the Components of Carbon Catabolite Repression in Clostridium perfringensHorton, William Henry Clay (Virginia Tech, 2004-12-08)Clostridium perfringens is a versatile pathogen capable of causing a wide array of diseases, ranging from clostridial food poisoning to tissue infections such as gas gangrene. An important factor in virulence as well as in the distribution of C. perfringens is its ability to form an endospore. The symptoms of C. perfringens food poisoning are directly correlated to the release of an enterotoxin at the end of the sporulation process. The sporulation process in C. perfringens is subject to carbon catabolite repression (CCR) by sugars, especially glucose. CCR is a regulatory pathway that alters transcription based on carbon source availability. In Gram-positive bacteria, the HPr kinase/phosphatase is responsible for this nutritional sensing by phosphorylating or dephosphorylating the serine-46 residue of HPr. HPr-Ser-P then forms a complex with the transcriptional regulator CcpA to regulate transcription. We were able to show here that purified recombinant C. perfringens HPr kinase/phosphatase was able to phosphorylate the serine-46 residue of HPr. When the codon for this serine residue is mutated through PCR mutagenesis to encode alanine, phosphorylation could not take place. We have also shown that in gel retardation assays, CcpA and HPr-Ser-P were able to bind to two DNA fragments containing putative C. perfringens CRE-sites, sequences where CcpA binds to regulate transcription. The genome sequence of a food poisoning strain of C. perfringens was searched for potential CRE-sites using degenerate sequences designed to match those CRE-sites CcpA was shown to bind. DNA fragments containing these newly identified CRE-sites were then used in gel retardation assays to determine whether CcpA binds to these CRE-sites, making them candidates for CCR regulation. These results, combined with comparisons of metabolic characteristics of a ccpA- strain versus wild-type C. perfringens, provide evidence that CcpA participates in the regulation of carbon catabolite repression in the pathogenic bacterium C. perfringens
- Characterization of the structure and function of a Bacteroides thetaiotaomicron 16S rRNA promoterThorson, Mary Leah (Virginia Tech, 2003-06-06)The bacteroides group is a subdivision in the Cytophaga-Flavobacterium-Bacteroides phylum. This group is as phylogenetically distinct from other Gram-negative enterics, including Escherichia coli, as they are from Gram-positive organisms. Furthermore, there is no cross expression between genes of E. coli and Bacteroides species. It is thought that this difference in gene expression lies in part at the level of transcription initiation and is due to the sequences within the promoter region itself. A putative consensus sequence for Bacteroides promoters has been published by C. Jeff Smith’s research group based on alignments of the sequences upstream of certain regulated genes. However, this consensus has not been found within all putative Bacteroides promoters. In this study, the promoter structure and function of a strong housekeeping B. thetaiotaomicron 16S rRNA promoter was examined and compared to an E. coli 16S rRNA promoter. Our hypothesis is that there are significant differences between the promoters of these two organisms. Analysis of B. thetaiotaomicron sequence upstream of the 16S rRNA gene has revealed the same overall structure known for E. coli 16S rRNA promoters in that there are two putative promoters separated by approximately 150 bp. However, the B. thetaiotaomicron 16S rRNA promoter contains the proposed Bacteroides —7 and —33 consensus sequences instead of the well known E. coli —10 and —35 consensus sequences. The biological activity of the B. thetaiotaomicron 16S rRNA full-length promoter was confirmed using a Bacteroides lux reporter system. A newly designed Bacteroides lux reporter was used to analyze specific regions of the B. thetaiotaomicron 16S rRNA promoter. In addition, by pairing the B. thetaiotaomicron 16S rRNA promoter with an E. coli ribosomal binding site, and vice-versa, the improved lux reporter was used to further confirm that the difference in gene expression between the two species lies at the level of transcription in E. coli. In Bacteroides, however, transcription and translation may work together to create a barrier to efficient gene expression of foreign genes.
- Characterization of Type IV Pilus System Genes and Their Regulation in Clostridium perfringensMurray, Samantha Rose (Virginia Tech, 2017-06-06)Clostridium perfringens is a Gram-positive (Gr+) anaerobic pathogen that was found to contain Type IV pilus (T4P) system genes within the genomes of all its sequenced strains. T4P are widely used in Gram-negative organisms for aggregation, biofilm formation, adherence, and DNA uptake. Because few examples of T4P-utilizing Gram-positive bacteria are studied to date, we wanted to characterize the T4P system in this Gr+ bacterium. To understand the regulation of T4P genes and therefore better understand their expression, we employed the highly powerful next-generation sequencing tool RNA-seq in a variety of conditions. RNA-seq uncovered previously unknown regulatory mechanisms surrounding T4P genes as well as provided transcriptional information for most of the genes in the C. perfringens strain 13 genome. We also utilized reporter gene assays to look at post-transcriptional regulation of T4P promoters. The wealth of RNA-seq data acted as a jumping-off point for many smaller projects involving transcriptional regulators that may influence T4P expression. We investigated a novel small RNA in close proximity to the major T4P operon, as well as two little-characterized transcriptional regulators that function in the same conditions as T4P genes. RNA-seq also provided data to develop a method for protein purification from C. perfringens without induction.
- Chemical Inhibition of Nitrification: Evaluating Methods to Detect and Characterize Inhibition and the Role of Selected Stress Responses Upon Exposure to Oxidative and Hydrophobic ToxinsKelly, Richard Thomas, II (Virginia Tech, 2005-06-21)This research first examined nitrification inhibition caused by different classes of industrially relevant chemicals on activated sludge and found that conventional aerobic nitrification was inhibited by single pulse inputs of every chemical tested, with 1-chloro-2,4-dinitrobenzene (oxidant) having the most severe impact, followed by alkaline pH 11, cadmium (heavy metal), cyanide, octanol (hydrophobic) and 2,4-dinitrophenol (respiratory uncoupler). Of the different chemicals tested, the oxidative and hydrophobic chemicals showed severe nitrification inhibition relative to other treatment processes and therefore deserved further investigation. For oxidative chemicals, we hypothesized that the more severe inhibition was because nitrifying bacteria lack one or more of the microbial stress response mechanisms used to mediate the toxic effect of oxidative chemicals. During these experiments, we showed that a rapid (minutes) antioxidant potassium efflux mechanism does not exist in two nitrifying bacteria, Nitrosomonas europaea and Nitrospira moscoviensis. Furthermore, we showed that another important antioxidant molecule, glutathione, was not oxidized as readily as in a non-nitrifying bacterium. Furthermore, we hypothesized that hydrophobic chemical-induced nitrification inhibition recovered more quickly because of the presence of membrane modification stress response mechanisms. While testing this hypothesis, we showed that N. europaea modified its cell membrane in response to hydrophobic chemicals using a long-term (hours) membrane modification mechanism that required the synthesis of new fatty acids, but it did not contain a short-term (minutes) response mechanism involving a cis/trans isomerase. Therefore, investigating these nitrifier stress responses showed that nitrifiers lack short-term stress responses that may be used to rapidly detect inhibition, indicating that conventional methods of detecting nitrification inhibition, like differential respirometry and nitrate generation rate (NGR), are still the fastest and easiest methods to use. Because several conventional methods exist, we also investigated differences between differential respirometry and a UV method we developed to measure NGR. During these tests, we showed that the UV NGR method provided a more reliable measure of nitrification inhibition than differential respirometry, and that the time to maximum nitrification inhibition depended on the properties of the chemical toxin, which implies that longer exposure times may be needed to accurately predict nitrification inhibition.
- The Cloning of a Putative Regulatory Gene and the sol Region from Clostridium beijerinckiiHong, Rui (Virginia Tech, 1999-08-09)The solvent-producing clostridia are well known for their ability to produce acetone, butanol and isopropanol in industrial fermentation. Production of these compounds occurs in cells that have completed a metabolic switch under specific growth conditions. Knowledge of the regulation of the metabolic switch will make the industrial process more reliable. From an isopropanol-producing strain Clostridium beijerinckii NRRL B593, a gene which encodes a putative NtrC-like regulatory protein was cloned and sequenced. The gene codes for a polypeptide of 632 amino acids and has been designated the stc gene. Expression of the stc gene was confirmed by RT-PCR. The co-presence of the stc gene with the adh gene which encodes a primary/secondary alcohol dehydrogenase in isopropanol-producing clostridia suggests that the stc gene may be functionally related to isopropanol production. From C. beijerinckii NRRL B592, a region which encompassed the solvent-production genes ald (aldehyde dehydrogenase), ctfA and ctfB (acetoacetate: butyrate/acetate CoA-transferase) and part of adc (acetoacetate decarboxylase) was cloned and sequenced. The organization of these genes was similar to that in C. beijerinckii NRRL B593. Northern analysis indicated that these four genes were co-transcribed on the same messenger RNA in C. beijerinckii NRRL B593. Therefore, in C. beijerinckii, the sol operon consists of the ald -ctfA-ctfB-adc genes, which differs from the sol operon in Clostridium acetobutylicum.
- Complete Genome Assembly of Pantoea stewartii subsp. stewartii DC283, a Corn PathogenDuong, Duy An; Stevens, Ann M.; Jensen, Roderick V. (2017-06)The phytopathogen Pantoea stewartii subsp. stewartii DC283 causes Stewart's wilt disease in corn after transmission from the corn flea beetle insect vector. Here, we report that the complete annotated genome of P. stewartii DC283 has been fully assembled into one circular chromosome, 10 circular plasmids, and one linear phage.