Browsing by Author "Stocker, Michelle R."
Now showing 1 - 13 of 13
Results Per Page
Sort Options
- Cranial Musculoskeletal Description of Black-Throated Finch (Aves: Passeriformes: Estrildidae) with DiceCTTo, Khanh H.T.; O’Brien, H.D.; Stocker, Michelle R.; Gignac, P.M. (Oxford University Press, 2021)Dietary requirements and acquisition strategies change throughout ontogeny across various clades of tetrapods, including birds. For example, birds hatch with combinations of various behavioral, physiological, and morphological factors that place them on an altricial– precocial spectrum. Passeriformes (songbirds) in particular, a family constituting approximately more than half of known bird species, displays the most drastic difference between hatchling and adults in each of these aspects of their feeding biology. How the shift in dietary resource acquisition is managed during ontogeny alongside its relationship to the morphology of the feeding apparatus has been largely understudied within birds. Such efforts have been hampered partly due to the small size of many birds and the diminutive jaw musculature they employ. In this study, we used standard and diffusible iodinebased contrast-enhanced computed tomography in conjunction with digital dissection to quantify and describe the cranial musculature of the Black-throated Finch (Poephila cincta) at fledgling and adult stages. Our results reveal that in both the fledgling and the adult, cranial musculature shows clear and complex partitioning in the Musculus adductor mandibulae externus that is consistent with other families within Passeriformes. We quantified jaw-muscle sizes and found that the adult showed a decrease in muscle mass in comparison to the fledgling individual. We propose that this could be the result of low sample size or a physiological effect of parental care in Passeriformes. Our study shows that high-resolution visualization techniques are informative at revealing morphological discrepancies for studies that involve small specimens such as Passeriformes especially with careful specimen selection criteria.
- The earliest equatorial record of frogs from the Late Triassic of ArizonaStocker, Michelle R.; Nesbitt, Sterling J.; Kligman, Ben T.; Paluh, Daniel J.; Marsh, Adam D.; Blackburn, David C.; Parker, William G. (Royal Society Publishing, 2019-02-01)Crown-group frogs (Anura) originated over 200 Ma according to molecular phylogenetic analyses, though only a few fossils from high latitudes chronicle the first approximately 60 Myr of frog evolution and distribution. We report fossils that represent both the first Late Triassic and the earliest equatorial record of Salientia, the group that includes stem and crown-frogs. These small fossils consist of complete and partial ilia with anteriorly directed, elongate and distally hollow iliac blades. These features of these ilia, including the lack of a prominent dorsal protuberance and a shaft that is much longer than the acetabular region, suggest a closer affinity to crown-group Anura than to Early Triassic stem anurans Triadobatrachus from Madagascar and Czatkobatrachus from Poland, both high-latitude records. The new fossils demonstrate that crown anurans may have been present in the Late Triassic equatorial region of Pangea. Furthermore, the presence of Early Jurassic anurans in the same stratigraphic sequence (Prosalirus bitis from the Kayenta Formation) suggests that anurans survived the climatic aridification of this region in the early Mesozoic. These fossils highlight the importance of the targeted collection of microfossils and provide further evidence for the presence of crown-group representatives of terrestrial vertebrates prior to the end-Triassic extinction.
- The evolution of intraspecific variation, growth, and body size in early theropod dinosaursGriffin, Christopher T. (Virginia Tech, 2016-06-24)Understanding the changes undergone during the life of an organism is often crucial to properly interpreting the evolutionary history of a group. For extinct organisms, this process can only be directly studied through growth series of fossils representing individuals at different stages of maturity. The growth patterns of the earliest dinosaurs (230–190 million years ago), in particular the morphological changes undergone during the life history of an individual (i.e., ontogeny) is poorly understood. To tackle this problem, I studied the changes undergone during growth of two early theropod dinosaurs, Coelophysis bauri and Megapnosaurus rhodesiensis. To reconstruct the growth of these dinosaurs I used ontogenetic sequence analysis (OSA). I found that, unlike living birds, early dinosaurs possessed an extremely high amount of intraspecific variation in growth. This variation had been previously interpreted as sexual difference; however, I found no evidence of this. Because this variation is widespread among early dinosaurs and their relatives, I hypothesize that this is the ancestral condition of dinosaurian growth, and that this was lost along the evolution to birds. These ontogenetic events are conserved through evolution, and I used this to assess the maturity of large Triassic theropods: I suggest that all known large-bodied Triassic theropods were still growing rapidly at death, and that the maximum body size of Triassic theropods was higher than previously supposed. Theropods were large before the end Triassic mass extinction, unlike what has been previously hypothesized.
- Inferring Extinct Reptilian Response To Global Warming: Insights From Modern Stable Isotope RatiosRiegler, Mitchell Scott (Virginia Tech, 2018-06-04)Lizard ecology through time is largely unknown. Understanding ecology is important because of today’s drastic climate change, but this is not a unique event. Early Cenozoic hyperthermals were comparable to the perturbations currently experienced by living species. Understanding ecology through time must acknowledge the dynamic relationship between an organism and its environment on multiple scales. Ecological inferences can be based on form equaling function, correlating certain features (e.g. leaf-shaped dentition) with certain behaviors (e.g. herbivorous diet). Though this applies to specific taxa, there are confounding examples. Ecology can also be inferred through indirect means, but these are disconnected from the taxon of interest. Stable isotope geochemistry, however, provides an independent test. I analyzed stable isotope ratios (δ¹⁸O, δ¹³C) from enamel, providing new data on the connection between morphology, diet, and environment. I find a trophic separation in δ¹³C, and indications of aridity through δ¹⁸O. I applied this framework to extinct lizards from an Early Eocene (Wa4) assemblage, a key time between two major global warming events (Paleocene-Eocene Thermal Maximum and Early Eocene Climatic Optimum). I identify xenosaurid and glyptosaurine squamates and alethinophidian snakes. The xenosaurid is one of the youngest representatives of Restes rugosus, and I provide the first testable hypothesis of its ecology. These δ¹⁸O values corroborate hypotheses of a wet, tropical environment, and the δ¹³C values indicate an insectivorous or carnivorous diet for both taxa. My study provides an independent test of ecology of both extant and fossil lizards, with implications for differing survivorship throughout the early Cenozoic.
- Intervertebral Articulation and the Evolution of Large Body Size in ArchosauriaStefanic, Candice Marie (Virginia Tech, 2017-06-26)Dinosaurs are the largest animals to ever walk on the continents and some reached body sizes of up to 70 tons. Observation of their closest living relatives, birds and crocodylians, could never allow for prediction of gigantic dinosaurian forms. Therefore, the fossil record is crucial to understanding the evolutionary changes of these animals through time, including body size trends. The reptile group Archosauria encompasses living and extinct birds and crocodylians as well as non-avian dinosaurs and crocodile relatives called pseudosuchians. My research focuses on studying fossils of extinct archosaurs to determine how the morphology of their skeletons allowed for growth to large body sizes. I am specifically interested in how the vertebral column fits together and how the structures that articulate vertebrae change throughout the phylogeny (i.e. family tree) of Archosauria. Although major body size trends are well known for archosaurs, less research has focused on skeletal features that are associated with the evolution of large body size in that group. I hypothesize that the vertebral column will have these features. To answer the question of how vertebrae morphology is related to body size, I first described eight vertebrae from a large pseudosuchian archosaur Poposaurus langstoni. This animal possesses an accessory articulation between the vertebrae in its trunk region (i.e. between the neck and hips) called the hyposphene-hypantrum articulation. I then surveyed vertebrae from across Archosauria and found a close fit of presence of the articulation with large sizes and that it evolves independently in several archosaur groups.
- A long-necked tanystropheid from the Middle Triassic Moenkopi Formation (Anisian) provides insights into the ecology and biogeography of tanystropheidsFormoso, Kiersten; Nesbitt, Sterling J.; Pritchard, Adam C.; Stocker, Michelle R.; Parker, William G. (Society of Vertebrate Paleontology, 2019-11)Archosauromorphs are a diverse and successful group of reptiles that radiated into a series of groups around the time of the end-Permian extinction. One of these groups of archosauromorphs, tanystropheids, consists of diverse forms, and some of the largest members of the group possessed extremely elongated cervical vertebrae (greater than five times longer than tall), resulting in a hyperelongate neck. These derived tanystropheids have been found in Tethyan marine deposits of Pangaea. Four partial cervical vertebrae from a hyperelongate-necked tanystropheid from the Middle Triassic Moenkopi Formation of Arizona and New Mexico are described in this paper. These cervical vertebrae are assigned to Tanystropheidae, specifically the clade that includes the hyperelongate-necked Tanystropheus based on character states, which include an elongate centrum (length to height ratio of 6.2), the presence of epipophyses, and an elongate axial centrum. The Moenkopi tanystropheid elements were found in lower latitude fluvial sequences without any marine influence, corresponding to western Pangaea, whereas Tanystropheus-like tanystropheids are typically associated with marginal marine environments in middle to high latitudes of eastern Pangaea. These fossils suggest that hyperelongate-necked, Tanystropheus-like tanystropheids were perhaps behaviorally bound to general semi-aquatic environments, both marine and freshwater, due to their unique morphology. These fossils also greatly extend the biogeographic range of large tanystropheids and increase the anatomical diversity of tanystropheids known from North America demonstrating that the clade persisted in a wide variety of environments throughout the Triassic Period.
- Morphology: Too hip for two sacral vertebraeStocker, Michelle R. (eLife, 2019-12-19)A complex pelvic morphology has been discovered in the fossils of one of the largest crocodylians.
- A new caimanine alligatorid from the Middle Eocene of Southwest Texas and implications for spatial and temporal shifts in Paleogene crocodyliform diversityStocker, Michelle R.; Brochu, Christopher A.; Kirk, E. Christopher (PeerJ, 2021-01-15)Dramatic early Cenozoic climatic shifts resulted in faunal reorganization on a global scale. Among vertebrates, multiple groups of mammals (e.g., adapiform and omomyiform primates, mesonychids, taeniodonts, dichobunid artiodactyls) are well known from the Western Interior of North America in the warm, greenhouse conditions of the early Eocene, but a dramatic drop in the diversity of these groups, along with the introduction of more dry-tolerant taxa, occurred near the Eocene–Oligocene boundary. Crocodyliforms underwent a striking loss of diversity at this time as well. Pre-Uintan crocodyliform assemblages in the central Western Interior are characterized by multiple taxa, whereas Chadronian assemblages are depauperate with only Alligator prenasalis previously known. Crocodyliform diversity through the intervening Uintan and Duchesnean is not well understood. The middle Eocene Devil’s Graveyard Formation (DGF) of southwest Texas provides new data from southern latitudes during that crucial period. A new specimen from the middle member of the DGF (late Uintan–Duchesnean) is the most complete cranial material of an alligatorid known from Paleogene deposits outside the Western Interior. We identify this specimen as a caimanine based on notched descending laminae of the pterygoids posterior to the choanae and long descending processes of the exoccipitals that are in contact with the basioccipital tubera. Unlike Eocaiman cavernensis, the anterior palatine process is rounded rather than quadrangular. The relationships and age of this new taxon support the hypothesis that the modern distribution of caimanines represents a contraction of a more expansive early Cenozoic distribution. We hypothesize that the range of caimanines tracked shifting warm, humid climatic conditions that contracted latitudinally toward the hothouse-icehouse transition later in the Eocene.
- A new rauisuchid (Archosauria, Pseudosuchia) from the Upper Triassic (Norian) of New Mexico increases the diversity and temporal range of the cladeStocker, Michelle R.; Lessner, Emily J.; Smith, Nathan D.; Turner, Alan H.; Irmis, Randall B.; Nesbitt, Sterling J. (PeerJ, 2016-09-06)Rauisuchids are large (2–6 m in length), carnivorous, and quadrupedal pseudosuchian archosaurs closely related to crocodylomorphs. Though geographically widespread, fossils of this clade are relatively rare in Late Triassic assemblages. The middle Norian (∼212 Ma) Hayden Quarry of northern New Mexico, USA, in the Petrified Forest Member of the Chinle Formation, has yielded isolated postcranial elements and associated skull elements of a new species of rauisuchid. Vivaron haydeni gen. et. sp. nov. is diagnosed by the presence of two posteriorly directed prongs at the posterior end of the maxilla for articulation with the jugal. The holotype maxilla and referred elements are similar to those of the rauisuchid Postosuchus kirkpatricki from the southwestern United States, but V. haydeni shares several maxillary apomorphies (e.g., a distinct dropoff to the antorbital fossa that is not a ridge, a straight ventral margin, and a well defined dental groove) with the rauisuchid Teratosaurus suevicus from the Norian of Germany. Despite their geographic separation, this morphological evidence implies a close phylogenetic relationship between V. haydeni and T. suevicus. The morphology preserved in the new Hayden Quarry rauisuchid V. haydeni supports previously proposed and new synapomorphies for nodes within Rauisuchidae. The discovery of Vivaron haydeni reveals an increased range of morphological disparity for rauisuchids from the low-paleolatitude Chinle Formation and a clear biogeographic connection with high paleolatitude Pangea.
- A new short-faced archosauriform from the Upper Triassic Placerias/Downs' quarry complex, Arizona, USA, expands the morphological diversity of the Triassic archosauriform radiationHeckert, Andrew B.; Nesbitt, Sterling J.; Stocker, Michelle R.; Schneider, Vincent P.; Hoffman, Devin K.; Zimmer, Brian W. (2021-08)The Placerias/Downs' Quarry complex in eastern Arizona, USA, is the most diverse Upper Triassic vertebrate locality known. We report a new short-faced archosauriform, Syntomiprosopus sucherorum gen. et sp. nov., represented by four incomplete mandibles, that expands that diversity with a morphology unique among Late Triassic archosauriforms. The most distinctive feature of Syntomiprosopus gen. nov. is its anteroposteriorly short, robust mandible with 3-4 anterior, a larger caniniform, and 1-3 "postcanine" alveoli. The size and shape of the alveoli and the preserved tips of replacement teeth preclude assignment to any taxon known only from teeth. Additional autapomorphies of S. sucherorum gen. et sp. nov. include a large fossa associated with the mandibular fenestra, an interdigitating suture of the surangular with the dentary, fine texture ornamenting the medial surface of the splenial, and a surangular ridge that completes a 90 degrees arc. The external surfaces of the mandibles bear shallow, densely packed, irregular, fine pits and narrow, arcuate grooves. This combination of character states allows an archosauriform assignment; however, an associated and similarly sized braincase indicates that Syntomiprosopus n. gen. may represent previously unsampled disparity in early-diverging crocodylomorphs. The Placerias Quarry is Adamanian (Norian, maximum depositional age similar to 219 Ma), and this specimen appears to be an early example of shortening of the skull, which occurs later in diverse archosaur lineages, including the Late Cretaceous crocodyliform Simosuchus. This is another case where Triassic archosauriforms occupied morphospace converged upon by other archosaurs later in the Mesozoic and further demonstrates that even well-sampled localities can yield new taxa.
- Osteology and relationships of Revueltosaurus callenderi (Archosauria: Suchia) from the Upper Triassic (Norian) Chinle Formation of Petrified Forest National Park, Arizona, United StatesParker, William G.; Nesbitt, Sterling J.; Irmis, Randall B.; Martz, Jeffrey W.; Marsh, Adam D.; Brown, Matthew A.; Stocker, Michelle R.; Werning, Sarah (2021-09-29)Once known solely from dental material and thought to represent an early ornithischian dinosaur, the early-diverging pseudosuchian Revueltosaurus callenderi is described from a minimum of 12 skeletons from a monodominant bonebed in the upper part of the Chinle Formation of Arizona. This material includes nearly the entire skeleton and possesses a combination of plesiomorphic and derived character states that help clarify ingroup relationships within Pseudosuchia. A phylogenetic analysis recovers R. callenderi in a clade with Aetosauria and Acaenasuchus geoffreyi that is named Aetosauriformes. Key autapomorphies of R. callenderi include a skull that is longer than the femur, a complete carapace of dermal armor including paramedian and lateral rows, as well as ventral osteoderms, and a tail end sheathed in bone. Histology of the femur and associated osteoderms demonstrate that R. callenderi was slow growing and that the individuals from the bonebed were not young juveniles but had not ceased growing. A review of other material assigned to Revueltosaurus concludes that the genus cannot be adequately diagnosed based on the type materials of the three assigned species and that only R. callenderi can be confidently referred to Revueltosaurus.
- A Short-Snouted, Middle Triassic Phytosaur and its Implications for the Morphological Evolution and Biogeography of PhytosauriaStocker, Michelle R.; Zhao, Li-Jun; Nesbitt, Sterling J.; Wu, Xiao-Chun; Li, Chun (Nature, 2017-04-10)Following the end-Permian extinction, terrestrial vertebrate diversity recovered by the Middle Triassic, and that diversity was now dominated by reptiles. However, those reptilian clades, including archosaurs and their closest relatives, are not commonly found until ~30 million years post-extinction in Late Triassic deposits despite time-calibrated phylogenetic analyses predicting an Early Triassic divergence for those clades. One of these groups from the Late Triassic, Phytosauria, is well known from a near-Pangean distribution, and this easily recognized clade bears an elongated rostrum with posteriorly retracted nares and numerous postcranial synapomorphies that are unique compared with all other contemporary reptiles. Here, we recognize the exquisitely preserved, nearly complete skeleton of Diandongosuchus fuyuanensis from the Middle Triassic of China as the oldest and basalmost phytosaur. The Middle Triassic age and lack of the characteristically-elongated rostrum fill a critical morphological and temporal gap in phytosaur evolution, indicating that the characteristic elongated rostrum of phytosaurs appeared subsequent to cranial and postcranial modifications associated with enhanced prey capture, predating that general trend of morphological evolution observed within Crocodyliformes. Additionally, Diandongosuchus supports that the clade was present across Pangea, suggesting early ecosystem exploration for Archosauriformes through nearshore environments and leading to ease of dispersal across the Tethys.
- Triassic stem caecilian supports dissorophoid origin of living amphibiansKligman, Ben T.; Gee, Bryan M.; Marsh, Adam D.; Nesbitt, Sterling J.; Smith, Matthew E.; Parker, William G.; Stocker, Michelle R. (Nature Research, 2023-01-25)Living amphibians (Lissamphibia) include frogs and salamanders (Batrachia) and the limbless worm-like caecilians (Gymnophiona). The estimated Palaeozoic era gymnophionan–batrachian molecular divergence suggests a major gap in the record of crown lissamphibians prior to their earliest fossil occurrences in the Triassic period. Recent studies find a monophyletic Batrachia within dissorophoid temnospondyls, but the absence of pre-Jurassic period caecilian fossils has made their relationships to batrachians and affinities to Palaeozoic tetrapods controversial. Here we report the geologically oldest stem caecilian—a crown lissamphibian from the Late Triassic epoch of Arizona, USA—extending the caecilian record by around 35 million years. These fossils illuminate the tempo and mode of early caecilian morphological and functional evolution, demonstrating a delayed acquisition of musculoskeletal features associated with fossoriality in living caecilians, including the dual jaw closure mechanism, reduced orbits and the tentacular organ. The provenance of these fossils suggests a Pangaean equatorial origin for caecilians, implying that living caecilian biogeography reflects conserved aspects of caecilian function and physiology19, in combination with vicariance patterns driven by plate tectonics. These fossils reveal a combination of features that is unique to caecilians alongside features that are shared with batrachian and dissorophoid temnospondyls, providing new and compelling evidence supporting a single origin of living amphibians within dissorophoid temnospondyls.