Browsing by Author "Stone, William B."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Exploring the immunogenicity of an insect-specific virus vectored Zika vaccine candidateTanelus, Manette; López, Krisangel; Smith, Shaan; Muller, John A.; Porier, Danielle L.; Auguste, Dawn I.; Stone, William B.; Paulson, Sally L.; Auguste, A. Jonathan (Springer, 2023-12-01)Zika virus (ZIKV) is an important re-emerging flavivirus that presents a significant threat to human health worldwide. Despite its importance, no vaccines are approved for use in humans. Insect-specific flaviviruses (ISFVs) have recently garnered attention as an antigen presentation platform for vaccine development and diagnostic applications. Here, we further explore the safety, immunogenicity, and efficacy of a chimeric ISFV-Zika vaccine candidate, designated Aripo-Zika (ARPV/ZIKV). Our results show a near-linear relationship between increased dose and immunogenicity, with 1011 genome copies (i.e., 108 focus forming units) being the minimum dose required for protection from ZIKV-induced morbidity and mortality in mice. Including boosters did not significantly increase the short-term efficacy of ARPV/ZIKV-vaccinated mice. We also show that weanling mice derived from ARPV/ZIKV-vaccinated dams were completely protected from ZIKV-induced morbidity and mortality upon challenge, suggesting efficient transfer of maternally-derived protective antibodies. Finally, in vitro coinfection studies of ZIKV with Aripo virus (ARPV) and ARPV/ZIKV in African green monkey kidney cells (i.e., Vero-76) showed that ARPV and ARPV/ZIKV remain incapable of replication in vertebrate cells, despite the presence of active ZIKV replication. Altogether, our data continue to support ISFV-based vaccines, and specifically the ARPV backbone is a safe, immunogenic and effective vaccine strategy for flaviviruses.
- The influence of SARS-CoV-2 infection on expression of drug-metabolizing enzymes and transporters in a hACE2 murine modelDeshpande, Kiran; Lange, Keith R.; Stone, William B.; Yohn, Christine; Schlesinger, Naomi; Kagan, Leonid; Auguste, A. Jonathan; Firestein, Bonnie L.; Brunetti, Luigi (Wiley, 2023-06)Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the resulting Coronavirus disease 2019 emerged in late 2019 and is responsible for significant morbidity and mortality worldwide. A hallmark of severe COVID-19 is exaggerated systemic inflammation, regarded as a "cytokine storm," which contributes to the damage of various organs, primarily the lungs. The inflammation associated with some viral illnesses is known to alter the expression of drug-metabolizing enzymes and transporters. These alterations can lead to modifications in drug exposure and the processing of various endogenous compounds. Here, we provide evidence to support changes in the mitochondrial ribonucleic acid expression of a subset of drug transporters (84 transporters) in the liver, kidneys, and lungs and metabolizing enzymes (84 enzymes) in the liver in a humanized angiotensin-converting enzyme 2 receptor mouse model. Specifically, three drug transporters (Abca3, Slc7a8, Tap1) and the pro-inflammatory cytokine IL-6 were upregulated in the lungs of SARS-CoV-2 infected mice. We also found significant downregulation of drug transporters responsible for the movement of xenobiotics in the liver and kidney. Additionally, expression of cytochrome P-450 2f2 which is known to metabolize some pulmonary toxicants, was significantly decreased in the liver of infected mice. The significance of these findings requires further exploration. Our results suggest that further research should emphasize altered drug disposition when investigating therapeutic compounds, whether re-purposed or new chemical entities, in other animal models and ultimately in individuals infected with SARS-CoV-2. Moreover, the influence and impact of these changes on the processing of endogenous compounds also require further investigation.
- A Novel Bacterial Protease Inhibitor Adjuvant in RBD-Based COVID-19 Vaccine Formulations Containing Alum Increases Neutralizing Antibodies, Specific Germinal Center B Cells and Confers Protection Against SARS-CoV-2 Infection in MiceCoria, Lorena M.; Saposnik, Lucas M.; Pueblas Castro, Celeste; Castro, Eliana F.; Bruno, Laura A.; Stone, William B.; Perez, Paula S.; Darriba, Maria Laura; Chemes, Lucia B.; Alcain, Julieta; Mazzitelli, Ignacio; Varese, Augusto; Salvatori, Melina; Auguste, A. Jonathan; Alvarez, Diego E.; Pasquevich, Karina A.; Cassataro, Juliana (Frontiers, 2022-02-28)In this work, we evaluated recombinant receptor binding domain (RBD)-based vaccine formulation prototypes with potential for further clinical development. We assessed different formulations containing RBD plus alum, AddaS03, AddaVax, or the combination of alum and U-Omp19: a novel Brucella spp. protease inhibitor vaccine adjuvant. Results show that the vaccine formulation composed of U-Omp19 and alum as adjuvants has a better performance: it significantly increased mucosal and systemic neutralizing antibodies in comparison to antigen plus alum, AddaVax, or AddaS03. Antibodies induced with the formulation containing U-Omp19 and alum not only increased their neutralization capacity against the ancestral virus but also cross-neutralized alpha, lambda, and gamma variants with similar potency. Furthermore, the addition of U-Omp19 to alum vaccine formulation increased the frequency of RBD-specific geminal center B cells and plasmablasts. Additionally, U-Omp19+alum formulation induced RBD-specific Th1 and CD8(+) T-cell responses in spleens and lungs. Finally, this vaccine formulation conferred protection against an intranasal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenge of K18-hACE2 mice.