Browsing by Author "Strachan, Robin A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Tectonic Transport Directions, Shear Senses and Deformation Temperatures Indicated by Quartz c-Axis Fabrics and Microstructures in a NW-SE Transect across the Moine and Sgurr Beag Thrust Sheets, Caledonian Orogen of Northern ScotlandLaw, Richard D.; Thigpen, J. Ryan; Mazza, Sarah E.; Mako, Calvin A.; Krabbendam, Maarten; Spencer, Brandon M.; Ashley, Kyle T.; Strachan, Robin A.; Davis, Ella F. (MDPI, 2021-09-30)Moine metasedimentary rocks of northern Scotland are characterized by arcuate map patterns of mineral lineations that swing progressively clockwise from orogen-perpendicular E-trending lineations in greenschist facies mylonites above the Moine thrust on the foreland edge of the Caledonian Orogen, to S-trending lineations at higher structural levels and metamorphic grades in the hinterland. Quartz c-axis fabrics measured on a west to east coast transect demonstrate that the lineations developed parallel to the maximum principal extension direction and therefore track the local tectonic transport direction. Microstructures and c-axis fabrics document a progressive change from top to the N shearing in the hinterland to top to the W shearing on the foreland edge. Field relationships indicate that the domain of top to the N shearing was at least 55 km wide before later horizontal shortening on km-scale W-vergent folds that detach on the underlying Moine thrust. Previously published data from the Moine thrust mylonites demonstrate that top to the W shearing had largely ceased by 430 Ma, while preliminary isotopic age data suggest top to the N shearing occurred at ~470–450 Ma. In addition, data from the east coast end of our transect indicate normal-sense top down-SE shearing at close to peak temperatures at ~420 Ma that may be related to the closing stages of Scandian deformation, metamorphism and cooling/exhumation.
- A template for an improved rock-based subdivision of the pre-Cryogenian timescaleShields, Graham A.; Strachan, Robin A.; Porter, Susannah M.; Halverson, Galen P.; Macdonald, Francis A.; Plumb, Kenneth A.; de Alvarenga, Carlos J.; Banerjee, Dhiraj M.; Bekker, Andrey; Bleeker, Wouter; Brasier, Alexander; Chakraborty, Partha P.; Collins, Alan S.; Condie, Kent; Das, Kaushik; Evans, David AD D.; Ernst, Richard; Fallick, Anthony E.; Frimmel, Hartwig; Fuck, Reinhardt; Hoffman, Paul F.; Kamber, Balz S.; Kuznetsov, Anton B.; Mitchell, Ross N.; Poire, Daniel G.; Poulton, Simon W.; Riding, Robert; Sharma, Mukund; Storey, Craig; Stueeken, Eva; Tostevin, Rosalie; Turner, Elizabeth; Xiao, Shuhai; Zhang, Shuanhong; Zhou, Ying; Zhu, Maoyan (Geological Society of America, 2021-07-07)The geological timescale before 720 Ma uses rounded absolute ages rather than specific events recorded in rocks to subdivide time. This has led increasingly to mismatches between subdivisions and the features for which they were named. Here we review the formal processes that led to the current timescale, outline rock-based concepts that could be used to subdivide pre-Cryogenian time and propose revisions. An appraisal of the Precambrian rock record confirms that purely chronostratigraphic subdivision would require only modest deviation from current chronometric boundaries, removal of which could be expedited by establishing event-based concepts and provisional, approximate ages for eon-, era-and period-level subdivisions. Our review leads to the following conclusions: (1) the current informal four-fold Archean subdivision should be simplified to a tripartite scheme, pending more detailed analysis, and (2) an improved rock-based Proterozoic Eon might comprise a Paleoproterozoic Era with three periods (early Paleoproterozoic or Skourian, Rhyacian, Orosirian), Mesoproterozoic Era with four periods (Statherian, Calymmian, Ectasian, Stenian) and a Neoproterozoic Era with four periods ( pre-Tonian or Kleisian, Tonian, Cryogenian and Ediacaran). These proposals stem from a wide community and could be used to guide future development of the pre-Cryogenian timescale by international bodies.