Browsing by Author "Sublett, D. Matthew, Jr."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Biogenic formation of amorphous carbon by anaerobic methanotrophs and select methanogensAllen, Kylie D.; Wegener, Gunter; Sublett, D. Matthew, Jr.; Bodnar, Robert J.; Feng, Xu; Wendt, Jenny; White, Robert H. (AAAS, 2021-10-27)Elemental carbon exists in different structural forms including graphite, diamond, fullerenes, and amorphous carbon. In nature, these materials are produced through abiotic chemical processes under high temperature and pressure but are considered generally inaccessible to biochemical synthesis or breakdown. Here, we identified and characterized elemental carbon isolated from consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB), which together carry out the anaerobic oxidation of methane (AOM). Two different AOM consortia, ANME-1a/HotSeep-1 and ANME-2a/c/Seep-SRB, produce a black material with similar characteristics to disordered graphite and amorphous carbon. Stable isotope probing studies revealed that the carbon is microbially generated during AOM. In addition, we found that select methanogens also produce amorphous carbon with similar characteristics to the carbon from AOM consortia. Biogenic amorphous carbon may serve as a conductive element to facilitate electron transfer, or redox active functional groups associated with the carbon could act as electron donors and acceptors.
- Formation of miarolitic-class, segregation-type pegmatites in the Taishanmiao batholith, China: The role of pressure fluctuations and volatile exsolution during pegmatite formation in a closed, isochoric systemYuan, Yabin; Moore, Lowell R.; McAleer, Ryan J.; Yuan, Shunda; Ouyang, Hegen; Belkin, Harvey E.; Mao, Jingwen; Sublett, D. Matthew, Jr.; Bodnar, Robert J. (Mineralogical Society of America, 2021-10)The Taishanmiao granitic batholith, located in the Eastern Qinling Orogen in Henan Province, China, contains numer-ous small (mostly tens of centimeters in maximum dimension) bodies exhibiting textures and mineralogy characteristics of simple quartz and alkali feldspar pegmatites. Analysis of melt inclusions (MI) and fluid inclusions (FI) in pegmatitic quartz, combined with Rhyolite-MELTS modeling of the crystallization of the granite, have been applied to develop a conceptual model of the physical and geochemical processes associated with the formation of the pegmatites. These results allow us to consider the formation of the Taishanmiao pegmatites within the context of varios models that have been proposed for pegmatite formation. Field observations and geochemical data indicate that the pegmatites represent the latest stage in the crystallization of the Taishanmiao granite and occupy <4 vol% of the syenogranite phase of the batholith. Results of Rhyolite-MELTS modeling suggest that the pegmatite-forming melts can be produced through continuous fractional crystallization of the Taishanmiao granitic magma, consistent with the designation of the pegmatites as a miarolitic class, segregation-type pegmatites rather than the more common intrusive-type of pegmatite. The mineral assemblage predicted by Rhyolite-MELTS after-96% of the original granite-forming melt had crystallized consists of-51 vol% alkali feldspar, 34 vol% quartz, 14 vol% plagioclase, 0.1 vol% biotite, and 1 vol% magnetite, similar to the alkali feldspar + quartz dominated mineralogy of the pegmatites. Moreover, the modeled residual melt composition following crystallization of-96% of the original melt is similar to the composition of homogenized MI in quartz within the pegmatite. Rhyolite-MELTS predicts that the granite-forming melt remained volatile-undersaturated during crystallization of the batholith and contained-6.3 wt% H2O and-500 ppm CO2 after-96% crystallization when the pegmatites began to develop. The Rhyolite-MELTS prediction that the melt was volatile-undersaturated at the time the pegmatites began to form, but became volatile-saturated during the early stages of pegmatite formation, is consistent with the presence of some inclusion assemblages consisting of only MI, while others contain co-existing MI and FI. The relationship between halogen (F and Cl) and Na abundances in MI is also consistent with the interpretation that the very earliest stages of pegmatite formation occurred in the presence of a volatile-undersaturated melt and that the melt became volatile saturated as crystallization progressed. We propose a closed system, isochoric model for the formation of the pegmatites. Accordingly, the Taishanmiao granite crystallized isobarically at-3.3 kbar, and the pegmatites began to form at-734 degrees C and -3.3 kbar, after-96% of the original granitic melt had crystallized. During the final stages of crystallization of the granite, small pockets of the remaining residual melt became isolated within the enclosing granite and evolved as constant mass (closed), constant volume (isochoric) systems, similar to the manner in which volatile-rich melt inclusions in igneous phenocrysts evolve during post-entrapment crystallization under isochoric conditions. As a result of the negative volume change associated with crystallization, pressure in the pegmatite initially decreases as crystals form, and this leads to volatile exsolution from the melt phase. The changing PTX conditions produce a pressure-induced "liquidus deficit" that is analogous to liquidus undercooling and results in crystal growth as required to return the system to equilibrium PTX conditions. Ow-ing to the complex closed system, isochoric PVTX evolution of the melt-crystal-volatile system, the pressure does not decrease rapidly or monotonically during pegmatite formation but, rather, gradually fluctuates such that at some stages in the evolution of the pegmatite the pressure is decreasing while at other times the pressure increases as the system cools to maintain mass and volume balance. This behavior, in turn, leads to alternating episodes of precipitation and dis -solution that serve to coarsen (ripen) the crystals to produce the pegmatitic texture. The evolution of the pegmatitic melt described here is analogous to that which has been well-documented to occur in volatile-rich MI that undergo closed system, isochoric, post-entrapment crystallization.
- Shift in the Raman symmetric stretching band of N-2, CO2, and CH4 as a function of temperature, pressure, and densitySublett, D. Matthew, Jr.; Sendula, Eszter; Lamadrid, Hector M.; Steele-MacInnis, Matthew; Spiekermann, Georg; Burruss, Robert C.; Bodnar, Robert J. (2020-03)The Raman spectra of pure N-2, CO2, and CH4 were analyzed over the range 10 to 500 bars and from -160 degrees C to 200 degrees C (N-2), 22 degrees C to 350 degrees C (CO2), and -100 degrees C to 450 degrees C (CH4). At constant temperature, Raman peak position, including the more intense CO2 peak (nu+), decreases (shifts to lower wave number) with increasing pressure for all three gases over the entire pressure and temperature (PT) range studied. At constant pressure, the peak position for CO2 and CH4 increases (shifts to higher wave number) with increasing temperature over the entire PT range studied. In contrast, N-2 first shows an increase in peak position with increasing temperature at constant pressure, followed by a decrease in peak position with increasing temperature. The inflection temperature at which the trend reverses for N-2 is located between 0 degrees C and 50 degrees C at pressures above similar to 50 bars and is pressure dependent. Below similar to 50 bars, the inflection temperature was observed as low as -120 degrees C. The shifts in Raman peak positions with PT are related to relative density changes, which reflect changes in intermolecular attraction and repulsion. A conceptual model relating the Raman spectral properties of N-2, CO2, and CH4 to relative density (volume) changes and attractive and repulsive forces is presented here. Additionally, reduced temperature-dependent densimeters and barometers are presented for each pure component over the respective PT ranges. The Raman spectral behavior of the pure gases as a function of temperature and pressure is assessed to provide a framework for understanding the behavior of each component in multicomponent N-2-CO2-CH4 gas systems in a future study.