Browsing by Author "Subramanian, Venkataraman"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Chemical and Biological Methods to Detect Post-Translational Modifications of ArginineSlade, Daniel J.; Subramanian, Venkataraman; Fuhrmann, Jakob; Thompson, Paul R. (2014-02)Posttranslational modifications (PTMs) of protein embedded arginines are increasingly being recognized as playing an important role in both prokaryotic and eukaryotic biology, and it is now clear that these PTMs modulate a number of cellular processes including DNA binding, gene transcription, protein-protein interactions, immune system activation, and proteolysis. There are currently four known enzymatic PTMs of arginine ( i.e., citrullination, methylation, phosphorylation, ADP-ribosylation), and two non-enzymatic PTMs (i.e., carbonylation, advanced glycation end-products (AGEs)). Enzymatic modification of arginine is tightly controlled during normal cellular function, and can be drastically altered in response to various second messengers and in different disease states. Non-enzymatic arginine modifications are associated with a loss of metabolite regulation during normal human aging. This abnormally large number of modifications to a single amino acid creates a diverse set of structural perturbations that can lead to altered biological responses. While the biological role of methylation has been the most extensively characterized of the arginine PTMs, recent advances have shown that the once obscure modification known as citrullination is involved in the onset and progression of inflammatory diseases and cancer. This review will highlight the reported arginine PTMs and their methods of detection, with a focus on new chemical methods to detect protein citrullination.
- Chemical Proteomic Platform To Identify Citrullinated ProteinsLewallen, Daniel M.; Bicker, Kevin L.; Subramanian, Venkataraman; Clancy, Kathleen W.; Slade, Daniel J.; Martell, Julianne; Dreyton, Christina J.; Sokolove, Jeremy; Weerapana, Eranthie; Thompson, Paul R. (2015-11-20)Anti-citrullinated protein antibodies (ACPAs) are a hallmark of rheumatoid arthritis (RA) and are routinely used for disease diagnosis. Protein citrullination is also increased in cancer and other autoimmune disorders, suggesting that citrullinated proteins may serve as biomarkers for diseases beyond RA. To identify these citrullinated proteins, we developed biotin-conjugated phenylglyoxal (biotin-PG). Using this probe and our platform technology, we identified >50 intracellular citrullinated proteins. More than 20 of these are involved in RNA splicing, suggesting, for the first time, that citrullination modulates RNA biology. Overall, this chemical proteomic platform will play a key role in furthering ourunderstanding of protein citrullination in rheumatoid arthritis and potentially a wider spectrum of inflammatory diseases.
- Citrulination unravels stem cellsSlade, Daniel J.; Subramanian, Venkataraman; Thompson, Paul R. (2014-05)Maintenance of the pluripotent stem cell state is regulated by the post-translational modification of histones. The discovery that citrullination of the linker histone H1 is critical to this
- Peptidylarginine deiminase 2-catalyzed histone H3 arginine 26 citrullination facilitates estrogen receptor alpha target gene activationZhang, Xuesen; Bolt, Michael; Guertin, Michael J.; Chen, Wei; Zhang, Sheng; Cherrington, Brian D.; Slade, Daniel J.; Dreyton, Christina J.; Subramanian, Venkataraman; Bicker, Kevin L.; Thompson, Paul R.; Mancini, Michael A.; Lis, John T.; Coonrod, Scott A. (2012-08-14)Cofactors for estrogen receptor α (ERα) can modulate gene activity by posttranslationally modifying histone tails at target promoters. Here, we found that stimulation of ERα-positive cells with 17β-estradiol (E2) promotes global citrullination of histone H3 arginine 26 (H3R26) on chromatin. Additionally, we found that the H3 citrulline 26 (H3Cit26) modification colocalizes with ERα at decondensed chromatin loci surrounding the estrogen-response elements of target promoters. Surprisingly, we also found that citrullination of H3R26 is catalyzed by peptidylarginine deiminase (PAD) 2 and not by PAD4 (which citrullinates H4R3). Further, we showed that PAD2 interacts with ERα after E2 stimulation and that inhibition of either PAD2 or ERα strongly suppresses E2-induced H3R26 citrullination and ERα recruitment at target gene promoters. Collectively, our data suggest that E2 stimulation induces the recruitment of PAD2 to target promoters by ERα, whereby PAD2 then citrullinates H3R26, which leads to local chromatin decondensation and transcriptional activation.