Browsing by Author "Sun, Bingyao"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- EMI Terminal Behavioral Modeling of SiC-based Power ConvertersSun, Bingyao (Virginia Tech, 2015-06-09)With GaN and SiC switching devices becoming more commercially available, higher switching frequency is being applied to achieve higher efficiency and power density in power converters. However, electro-magnetic interference (EMI) becomes a more severe problem as a result. In this thesis, the switching frequency effect on conducted EMI noise is assessed. As EMI noise increases, the EMI filter plays a more important role in a power converter. As a result, an effective EMI modeling technique of the power converter system is required in order to find an optimized size and effective EMI filter. The frequency-domain model is verified to be an efficient and easy model to explore the EMI noise generation and propagation in the system. Of the various models, the unterminated behavioral model can simultaneously predict CM input and output noise of an inverter, and the prediction falls in line with the measurement around 10 MHz or higher. The DM terminated behavioral model can predict the DM input or output noise of the motor drive higher than 20 MHz. These two models are easy to extract and have high prediction capabilities; this is verified on a 10 kHz-switching-frequency Si motor drive. It is worthwhile to explore the prediction capability of the two models when they are applied to a SiC-based power inverter with switching frequency ranges from 20 kHz to 70 kHz. In this thesis, the CM unterminated behavioral model is first applied to the SiC power inverter, and results show that the model prediction capability is limited by the noise floor of the oscilloscope measurement. The proposed segmented-frequency-range measurement is developed and verified to be a good solution to the noise floor. With the improved impedance fixtures, the prediction from CM model matches the measurement to 30 MHz. To predict the DM input and output noise of the SiC inverter, the DM terminated behavioral model can be used under the condition that the CM and DM noise are decoupled. With the system noise analysis, the DM output side is verified to be independent of the CM noise and input side. The DM terminated behavioral model is extracted at the inverter output and predicts the DM output noise up to 30 MHz after solving the noise floor and DM choke saturation problem. At the DM input side, the CM and DM are seen to be coupled with each other. It is found experimentally that the mixture of the CM and DM noise results from the asymmetric impedance of the system. The mixed mode terminated behavioral model is proposed to predict the DM noise when a mixed CM effect exists. The model can capture the DM noise up to to 30 MHz when the impedance between the inverter to CM ground is not balanced. The issue often happens in extraction of the model impedance and is solved by the curving-fitting optimization described in the thesis. This thesis ends with a summary of contributions, limitations, and some future research directions.
- High-Frequency Oriented Design of Gallium-Nitride (GaN) Based High Power Density ConvertersSun, Bingyao (Virginia Tech, 2018-09-19)The wide-bandgap (WBG) devices, like gallium nitride (GaN) and silicon carbide (SiC) devices have proven to be a driving force of the development of the power conversion technology. Thanks to their distinct advantages over silicon (Si) devices including the faster switching speed and lower switching losses, WBG-based power converter can adopt a higher switching frequency and pursue higher power density and higher efficiency. As a trade-off of the advantages, there also exist the high-frequency-oriented challenges in the adoption of the GaN HEMT under research, including narrow safe gate operating area, increased switching overshoot, increased electromagnetic interference (EMI) in the gate loop and the power stages, the lack of the modules of packages for high current application, high gate oscillation under parallel operation. The dissertation is developed to addressed the all the challenges above to fully explore the potential of the GaN HEMTs. Due to the increased EMI emission in the gate loop, a small isolated capacitor in the gate driver power supply is needed to build a high-impedance barrier in the loop to protect the gate driver from interference. A 2 W dual-output gate driver power supply with ultra-low isolation capacitor for 650 V GaN-based half bridge is presented, featuring a PCB-embedded transformer substrate, achieving 85% efficiency, 1.6 pF isolation capacitor with 72 W/in3 power density. The effectiveness of the EMI reduction using the proposed power supply is demonstrated. The design consideration to build a compact 650 V GaN switching cell is presented then to address the challenges in the PCB layout and the thermal management. With the switching cell, a compact 1 kW 400 Vdc three-phase inverter is built and can operate with 500 kHz switching frequency. With the inverter, the high switching frequency effects on the inverter efficiency, volume, EMI emission and filter design are assessed to demonstrate the tradeoff of the adoption of high switching frequency in the motor drive application. In order to reduce the inverter CM EMI emission above 10 MHz, an active gate driver for 650 V GaN HEMT is proposed to control the dv/dt during turn-on and turn-off independently. With the control strategy, the penalty from the switching loss can be reduced. To build a high current power converter, paralleling devices is a normal approach. The dissertation comes up with the switching cell design using paralleled two and four 650 V GaN HEMTs with minimized and symmetric gate and power loop. The commutation between the paralleled HEMTs is analyzed, based on which the effects from the passive components on the gate oscillation are quantified. With the switching cell using paralleled GaN HEMTs, a 10 kW LLC resonant converter with the integrated litz-wire transformer is designed, achieving 97.9 % efficiency and 131 W/in3 power density. The design consideration to build the novel litz-wire transformer operated at 400 kHz switching frequency is also presented. In all, this work focuses on providing effective solutions or guidelines to adopt the 650 V GaN HEMT in the high frequency, high power density, high efficiency power conversion and demonstrates the advance of the GaN HEMTs in the hard-switched and soft-switched power converters.