Browsing by Author "Sun, Wenjuan"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Flow characteristics and dynamic responses of a rear circular cylinder behind the square cylinder with different side lengthsTu, Jiahuang; Sun, Wenjuan; Zhou, Dai; Han, Zhaolong (2017-06)Wake-induced vibrations of a 2-DOF circular cylinder which is placed behind a stationary square cylinder with tandem arrangement are numerically investigated at low Reynolds numbers by using semi-implicit Characteristics-based split (CBS) finite element algorithm in this study. Numerical results demonstrate that the side length of the upstream square cylinder can significantly affect the characteristics of flow patterns, oscillation frequency, maximum amplitudes, X-Y trajectories, and hydrodynamic coefficients of the rear circular cylinder. The predominant vortex shedding patterns are 2S, 2P and 2T mode. In addition to the figure "8", "raindrop" and figure "dual-8" are observed in the X-Y vibrating trajectories for the circular cylinder. Finally, the interactions between cylinders are revealed according to the phase portrait of fluid force to displacement and the power spectral densities (PSD) features of the vibration amplitude on the rear circular cylinder and the instantaneous flow field, together with the wakeinduced vibration (WIV) mechanism underlying the oscillation characteristics of the circular cylinder behind a stationary square cylinder with different sizes.
- Quantification of Morphological Characteristics of Aggregates at Multiple ScalesSun, Wenjuan (Virginia Tech, 2015-01-21)Properties of aggregates are affected by their morphological characteristics, including shape factors, angularity and texture. These morphological characteristics influence the aggregate's mutual interactions and strengths of bonds between the aggregates and the binder. The interactions between aggregates and bond strengths between the aggregate and the binder are vital to rheological properties, related to workability and friction resistance of mixtures. As a consequence, quantification of the aggregate's morphological characteristics is essential for better quality control and performance improvement of aggregates. With advancement of hardware and software, the computation capability has reached the stage to rapidly quantify morphological characteristics at multiple scales using digital imaging techniques. Various computational algorithms have been developed, including Hough transform, Fourier transform, and wavelet analysis, etc. Among the aforementioned computational algorithms, Fourier transform has been implemented in various areas by representing the original image/signal in the spatial domain as a summation of representing functions of varying magnitudes, frequencies and phases in the frequency domain. This dissertation is dedicated to developing the two-dimensional Fourier transform (FFT2) method using the Fourier Transform Interferometry (FTI) system that is capable to quantify aggregate morphological characteristics at different scales. In this dissertation, FFT2 method is adopted to quantify angularity and texture of aggregates based on surface coordinates acquired from digital images in the FTI system. This is followed by a comprehensive review on prevalent aggregate imaging techniques for the quantification of aggregate morphological characteristics, including the second generation of Aggregate Image Measurement System (AIMS II), University of Illinois Aggregate Image Analyzer (UIAIA), the FTI system, etc. Recommendations are made on the usage of aggregate imaging system in the measurements of morphological parameters that are interested. After that, the influence of parent rock, crushing, and abrasion/polishing on aggregate morphological characteristics are evaluated. Atomic-scale roughness is calculated for crystal structures of five representative minerals in four types of minerals (i.e., α-quartz for quartzite/granite/gravel/aplite, dolomite for dolomite, calcite for limestone, haematite and magnetite for iron ore); roughness ranking at atomic-scale is further compared with surface texture ranking at macroscale based on measurement results using the FTI system and AIMS II. Morphological characteristics of aggregates before and after crushing test and micro-deval test are measured to quantitatively evaluate the influences of the crushing process and the abrasion/polishing process on morphological characteristics of aggregates, respectively.
- Quasi-Brittle Fracture Modeling of Preflawed Bitumen Using a Diffuse Interface ModelHou, Yue; Sun, Fengyan; Sun, Wenjuan; Guo, Meng; Xing, Chao; Wu, Jiangfeng (Hindawi, 2016-06-09)Fundamental understandings on the bitumen fracture mechanism are vital to improve the mixture design of asphalt concrete. In this paper, a diffuse interface model, namely, phase-field method is used for modeling the quasi-brittle fracture in bitumen. This method describes the microstructure using a phase-field variable which assumes one in the intact solid and negative one in the crack region. Only the elastic energy will directly contribute to cracking. To account for the growth of cracks, a nonconserved Allen-Cahn equation is adopted to evolve the phase-field variable. Numerical simulations of fracture are performed in bituminous materials with the consideration of quasi-brittle properties. It is found that the simulation results agree well with classic fracture mechanics.
- The State of the Art: Application of Green Technology in Sustainable PavementSun, Wenjuan; Lu, Guoyang; Ye, Cheng; Chen, Shiwu; Hou, Yue; Wang, Dawei; Wang, Linbing; Oeser, Markus (Hindawi, 2018-06-03)A wide range of literature on predominant green technologies for sustainable pavements is summarized in this paper. It covers two major aspects: energy harvesting technologies and permeable pavement systems. Fundamental mechanics of energy harvesting techniques and possible designs of energy harvesters are described, with the evaluation of energy conversion efficiency, and advantages and disadvantages. In addition, the designs of permeable pavement systems are discussed, along with their advantages and disadvantages. The latest technical innovations are highlighted. It is found that green technologies are promising for developing more sustainable pavements. Application issues are also pointed out, including construction challenges, durability, and life-cycle cost-benefit assessment. Future research directions are suggested to address practical challenges, such as efficient design, construction challenge, timely maintenance, and life-cycle performance assessment.