Browsing by Author "Sun, Yuepeng"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- The r/K selection theory and its application in biological wastewater treatment processesYin, Qidong; Sun, Yuepeng; Li, Bo; Feng, Zhaolu; Wu, Guangxue (Elsevier, 2022-06-10)Understanding the characteristics of functional organisms is the key to managing and updating biological processes for wastewater treatment. This review, for the first time, systematically characterized two typical types of strategists in wastewater treatment ecosystems via the r/K selection theory and provided novel strategies for selectively enriching microbial community. Functional organisms involved in nitrification (e.g., Nitrosomonas and Nitrosococcus), anammox (Candidatus Brocadia), and methanogenesis (Methanosarcinaceae) are identified as r-strategists with fast growth capacities and low substrate affinities. These r-strategists can achieve high pollutant removal loading rates. On the other hand, other organisms such as Nitrosospira spp., Candidatus Kuenenia, and Methanosaetaceae, are characterized as K-strategists with slow growth rates but high substrate affinities, which can decrease the pollutant concentration to low levels. More importantly, K-strategists may play crucial roles in the biodegradation of recalcitrant organic pollutants. The food-to-microorganism ratio, mass transfer, cell size, and biomass morphology are the key factors determining the selection of r-/K-strategists. These factors can be related with operating parameters (e.g., solids and hydraulic retention time), biomass morphology (biofilm or granules), and operating modes (continuous-flow or sequencing batch), etc., to achieve the efficient acclimation of targeted r-/K-strategists. For practical applications, the concept of substrate flux was put forward to further benefit the selective enrichment of r-/K-strategists, fulfilling effective management and improvement of engineered pollution control bioprocesses. Finally, the future perspectives regarding the development of the r/K selection theory in wastewater treatment processes were discussed.
- Unblocking the rate-limiting step of the municipal sludge anaerobic digestionWang, Jiefu; Sun, Yuepeng; Zhang, Dian; Broderick, Tom; Strawn, Mary; Santha, Hari; Pallansch, Karen; Deines, Allison; Wang, Zhi-Wu (Wiley, 2022-10)Anaerobic digestion stabilizes municipal sludge through total solids reduction and biogas production. It is generally accepted that hydrolysis accounts for the rate-limiting step of municipal sludge anaerobic digestion, impacting the overall rates of solids reduction and methane production. Technically, the sludge hydrolysis rate can be enhanced by the application of thermal hydrolysis pretreatment (THP) and is also affected by the total solids concentration, temperature, and solids retention time used in the anaerobic digestion. This study systematically analyzed and compared ways to take these four factors into the consideration of modern anaerobic digestion system for achieving the maximum solid reduction. Results showed that thermophilic anaerobic digestion was superior to mesophilic anaerobic digestion in terms of solids reduction but vice versa in terms of the methane production when integrated with THP. This difference has to do with the intermediate product accumulation and inhibition when hydrolysis outpaced methanogenesis in THP-enhanced thermophilic anaerobic digestion, which can be mitigated by adjusting the solids retention time. Practitioner points THP followed by TAD offers the greatest solids reduction rate. THP followed by MAD offered the greatest methane production rate. FAN inhibition appears to be an ultimate limiting factor constraining the methane production rate. In situ ammonia removal technique should be developed to further unblock the rate-limiting step.