Browsing by Author "Sundaram, Narayan"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Effects of Surface Conditions on Endwall Film-CoolingSundaram, Narayan (Virginia Tech, 2007-04-18)A higher demand in power output from modern land based gas turbines has resulted in an increase in combustor exit temperatures. High temperatures in turn have resulted in flatter profiles at the combustor exit warranting the need for sufficient cooling of the endwall region. Endwall cooling is affected by the coolant flow through certain design features. A typical endwall design includes a leakage slot at the interface between the combustor and the vane, a leakage slot at the vane-to-vane interface and film-cooling holes. In addition, with the increase in energy demands and depletion of natural gas resources, alternate fuels such as coal derived synthetic gas are being used in gas turbines. Coal derived fuels, however, contain traces of ash and other contaminants that deposit on endwall surfaces, thereby altering its surface conditions. The purpose of this study was to investigate the effects of realistic endwall features and surface conditions on leading edge endwall cooling. Endwall designs like placing film-cooling holes in a trench, which provide an effective means of improving cooling were also studied at the leading edge. An infrared camera was used to obtain measurements of adiabatic effectiveness levels and a laser Doppler velocimeter was used for flowfield measurements. This study was done on a large scale, low-speed, recirculating wind tunnel operating at a Reynolds number of 2.1e+5 and an inlet mainstream turbulence level of 1%. Endwall measurements were taken for coolant flow through varying slot width at the combustor-vane interface. A constant coolant mass flow and a narrower combustor-turbine interface slot caused the coolant to exit uniformly whereas increasing the slot width had an opposite effect. Measurements were also taken with hole blockage and spallation, which showed a 10-25% decrease in the effectiveness levels whereas near hole deposition showed a 20% increase in effectiveness levels. A comparison of the cooling effectiveness due to placement of film-cooling holes in a trench was made to film-cooling holes not placed in a trench. Measurements indicated a superior performance of trenched holes to holes without a trench. Trenched holes showed a 60% increase in effectiveness levels due to decreased coolant jet separation.
- Electrokinetically Driven Mixing in a Microchamber for Lab-on-a-Chip ApplicationsSundaram, Narayan (Virginia Tech, 2003-11-21)Electrokinetically Driven Mixing in a Microchamber for Lab-on-a-Chip Applications Narayan Sundaram Abstract Micro-Total-Analysis-Systems (μTAS) have been the focus of recent world wide research due to their varied applications. Much of the motivation for the development of μTAS stems from applications in biotechnology and biomedicine. A typical μTAS device includes a number of functional units ranging from sample injection or ingestion, pre-concentration, mixing with reagents, chemical reactions, separation, detection, and possibly a chemical response. Mixing of constituents is one of the key functions desired of these systems for conducting analyses in a short span of time. The flow regime in these small devices (typical sizes 100μm) being predominantly laminar (Reynolds number, Re < 1), it becomes difficult to rapidly mix the constituent species. Hence for effective mixing, it is necessary to increase the Reynolds number and/or induce bulk motion such that the material interface between the components to be mixed is continously augmented. The method developed to induce such motion is by the application of an AC fluctuating potential field across a microchamber in which mixing is to be performed. The externally applied electric field applies a force on free ions in the charged Debye layer very close to the surface (1-10 nanometers) and induces a flow velocity which is proportional to the electric field. This applied fluctuating electric field gives rise to hydrodynamic instabilities which are responsible for increasing the material contact surface and hence augmenting the rate of mixing by an order of magnitude or more over pure diffusion. To further enhance mixing, microbaffles are strategically placed inside the microchamber and the mixing time was further decreased by a factor of two. Mixing was also studied in a neutral (no charge on the walls) microchamber. It was found that the mixing achieved in the absence of surface charge was comparable to the mixing achieved in the case with microbaffles. This work establishes that CFD is a useful tool that is capable of providing insight into the flow physics in devices with very small length scales.