Browsing by Author "Swan, J. Edward"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- The Effect of Context Switching, Focal Switching Distance, Binocular and Monocular Viewing, and Transient Focal Blur on Human Performance in Optical See-Through Augmented RealityArefin, Mohammed S.; Phillips, Nate; Plopski, Alexander; Gabbard, Joseph L.; Swan, J. Edward (IEEE, 2022-01-01)In optical see-through augmented reality (AR), information is often distributed between real and virtual contexts, and often appears at different distances from the user. To integrate information, users must repeatedly switch context and change focal distance. If the user’s task is conducted under time pressure, they may attempt to integrate information while their eye is still changing focal distance, a phenomenon we term transient focal blur. Previously, Gabbard, Mehra, and Swan (2018) examined these issues, using a text-based visual search task on a one-eye optical see-through AR display. This paper reports an experiment that partially replicates and extends this task on a custom-built AR Haploscope. The experiment examined the effects of context switching, focal switching distance, binocular and monocular viewing, and transient focal blur on task performance and eye fatigue. Context switching increased eye fatigue but did not decrease performance. Increasing focal switching distance increased eye fatigue and decreased performance. Monocular viewing also increased eye fatigue and decreased performance. The transient focal blur effect resulted in additional performance decrements, and is an addition to knowledge about AR user interface design issues.
- The Effects of Text Drawing Styles, Background Textures, and Natural Lighting on Text Legibility in Outdoor Augmented RealityGabbard, Joseph L.; Swan, J. Edward; Hix, Deborah (MIT Press, 2006-02-01)A challenge in presenting augmenting information in outdoor augmented reality (AR) settings lies in the broad range of uncontrollable environmental conditions that may be present, specifically large-scale fluctuations in natural lighting and wide variations in likely backgrounds or objects in the scene. In this paper, we motivate the need for research on the effects of text drawing styles, outdoor background textures, and natural lighting on user performance in outdoor AR. We present a pilot study and a follow-on user-based study that examined the effects on user performance of outdoor background textures, changing outdoor illuminance values, and text drawing styles in a text identification task using an optical, see-through AR system. We report significant effects for all these variables, and discuss user interface design guidelines and ideas for future work.