Browsing by Author "Sweeney, Ted"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- An Exploration of the Decline in E-Scooter Ridership after the Introduction of Mandatory E-Scooter Parking Corrals on Virginia Tech's Campus in Blacksburg, VABuehler, Ralph; Broaddus, Andrea; White, Elizabeth; Sweeney, Ted; Evans, Chris (MDPI, 2022-12-23)We report shared e-scooter ridership and rider perceptions on Virginia Tech’s Blacksburg campus before and after introduction of mandatory e-scooter parking corrals in January 2022. The analysis relies on a panel of 131 e-scooter riders surveyed in Fall 2021 and Spring 2022. Although parking corrals were perceived favorably prior to implementation, perceptions became more negative afterwards. Respondents said corrals were not located where needed, difficult to find, fully occupied, and took too much extra time to use. After parking corrals were introduced, ridership declined 72% overall and also fell for all socio-economic subgroups. The heaviest user groups, like undergraduate males, were most likely to quit. The first study identifying desired and actual egress times for e-scooters, we found that roughly two-thirds of riders desired egress times under 2 min and one quarter under 1 min. Prior to the introduction of parking corrals, 82% of riders reported actual egress times under 2 min, and 43% under 1 min. Those who kept riding after the introduction of e-scooter corrals reported longer actual egress times and a stronger stated desire for egress times under 2 min. Communities should be careful when imposing e-scooter parking restrictions to ensure that e-scooter egress time is sufficiently low—ideally within an easy 2 min walk of popular origins and destinations.
- What factors contribute to e-scooter crashes: A first look using a naturalistic riding approachWhite, Elizabeth; Guo, Feng; Han, Shu; Mollenhauer, Michael A.; Broaddus, Andrea; Sweeney, Ted; Robinson, Sarah; Novotny, Adam; Buehler, Ralph (Elsevier, 2023-06)Introduction: Shared dockless electric scooters (e-scooters) are a popular shared mobility service providing an accessible last-mile transportation option in urban and campus environments. However, city and campus stakeholders may hesitate to introduce these scooters due to safety concerns. While prior e-scooter safety studies have collected injury data from hospitals or riding data under controlled or naturalistic conditions, these datasets are limited and did not identify risk factors associated with e-scooter riding safety. To address this gap in e-scooter safety research, this study collected the largest naturalistic e-scooter dataset to date and quantified the safety risks associated with behavioral, infrastructure, and environmental factors. Method: A fleet of 200 e-scooters was deployed on Virginia Tech’s campus in Blacksburg, VA for a 6-month period. Fifty were equipped with a unique onboard data acquisition system, using sensors and video to capture e-scooter trips in their entirety. The resulting dataset consisted of 3,500 hours of data spanning over 8,500 trips. Algorithms were developed to identify safety critical events (SCEs) in the dataset and analyses were conducted to determine the prevalence of various SCE risk factors and associated odds ratios. Results: Results from this study indicate that infrastructure-related factors, behavior of e-scooter riders and other actors, and environmental factors all contributed to the SCE risk for e-scooter riders in Virginia Tech’s pedestrian-dense campus environment. Conclusions: To help mitigate unsafe rider behavior, educational outreach programs should quantify the significant risks associated with infrastructure, behavioral, and environmental risk factors and provide clear recommendations to riders. Improved infrastructure maintenance and design may also improve safety for e-scooter riders. Practical Applications: The infrastructure, behavioral, and environmental risk factors quantified in this study can be applied by e-scooter service providers, municipalities, and campus administrators to develop mitigation strategies to reduce the safety risks associated with e-scooter deployments in the future.