Browsing by Author "Taetzsch, Thomas"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Dynamic UTR Usage Regulates Alternative Translation to Modulate Gap Junction Formation during Stress and AgingZeitz, Michael J.; Calhoun, Patrick J.; James, Carissa C.; Taetzsch, Thomas; George, Kijana K.; Robel, Stefanie; Valdez, Gregorio; Smyth, James W. (Elsevier, 2019-05-28)Connexin43 (Cx43; gene name GJA1) is the most ubiquitously expressed gap junction protein, and understanding of its regulation largely falls under transcription and post-translational modification. In addition to Cx43, Gja1 mRNA encodes internally translated isoforms regulating gap junction formation, whose expression is modulated by TGF-b. Here, using RLM-RACE, we identify distinct Gja1 transcripts differing only in 50 UTR length, of which two are upregulated during TGF-b exposure and hypoxia. Introduction of these transcripts into Gja1/ cells phenocopies the response of Gja1 to TGF-b with reduced internal translation initiation. Inhibiting pathways downstream of TGF-b selectively regulates levels of Gja1 transcript isoforms and translation products. Reporter assays reveal enhanced translation of fulllength Cx43 from shorter Gja1 50 UTR isoforms. We also observe a correlation among UTR selection, translation, and reduced gap junction formation in aged heart tissue. These data elucidate a relationship between transcript isoform expression and translation initiation regulating intercellular communication.
- Specific labeling of synaptic schwann cells reveals unique cellular and molecular featuresCastro, Ryan W.; Taetzsch, Thomas; Vaughan, Sydney K.; Godbe, Kerilyn; Chappell, John C.; Settlage, Robert E.; Valdez, Gregorio (2020-06-25)Perisynaptic Schwann cells (PSCs) are specialized, non-myelinating, synaptic glia of the neuromuscular junction (NMJ), that participate in synapse development, function, maintenance, and repair. The study of PSCs has relied on an anatomy-based approach, as the identities of cell-specific PSC molecular markers have remained elusive. This limited approach has precluded our ability to isolate and genetically manipulate PSCs in a cell specific manner. We have identified neuron-glia antigen 2 (NG2) as a unique molecular marker of S100 beta+ PSCs in skeletal muscle. NG2 is expressed in Schwann cells already associated with the NMJ, indicating that it is a marker of differentiated PSCs. Using a newly generated transgenic mouse in which PSCs are specifically labeled, we show that PSCs have a unique molecular signature that includes genes known to play critical roles in PSCs and synapses. These findings will serve as a springboard for revealing drivers of PSC differentiation and function.