Browsing by Author "Tan, Xinyu"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Integrated Experimental Characterization of the Lower Huron Shale in the Central Appalachian BasinTan, Xinyu (Virginia Tech, 2020-06-04)Reservoir characterization is an essential step in the oil/gas exploration process and is of great significance in the evaluation of oil/gas resources. To evaluate the production potential of the Lower Huron shale in the central Appalachian Basin, matrix permeability, Raman spectroscopy, Fourier Transform infrared spectroscopy (FTIR), and atomic force microscopy (AFM) were used in this study. According to the experimental results, matrix permeability is relatively high for a shale gas formation, suggesting great production potential of shale gas resources in this region. Additionally, four shale samples with varying thermal maturity were characterized by the complementary Raman and FTIR spectroscopy, and curve-fitting results successfully demonstrated the change of chemical structures with the evolution of thermal maturity. Raman spectroscopy results show that the curve fitted G band position and the band separation between the G band and D1 band tend to increase with the rise of thermal maturity level. Results of FTIR spectroscopy show that the aromaticity level and the condensation extent of aromatic rings show an increasing tendency with the increase of maturation level. Moreover, mechanical properties of these four shale samples were characterized by AFM. Results show that Young's modulus is in the range of 8.20 GPa - 12.94 GPa, which is in the normal range compared with the results from other shale formations. Additionally, scanned results show an increasing tendency for Young's modulus of the organic components with the rise of thermal maturity level in these shale samples. The potential reason for this phenomenon was also explored, specifically, the growth of aromatic groups and the decrease of the CH2/CH3 ratio may be possible reasons for the rise of Young's modulus of organic components in these shale samples. This work is meaningful for the evaluation of shale gas resources, especially emerging plays, in the central Appalachian Basin, and it also provides a valuable database for relevant research on shale matrix permeability, Raman, FTIR and AFM.
- Micrometer-scale Experimental Characterization of the Lower Huron Shale in the Central Appalachian BasinTan, Xinyu; Gilliland, Ellen; Tang, Xu; Fan, Ming; Ripepi, Nino (American Geophysical Union, 2020)The mechanical properties of shale play an important role in hydraulic fracturing design. Although the popular nanoindentation method can be performed to evaluate some mechanical characteristics of organic matter, it is still difficult to fully characterize mechanical properties of organic components of shale due to their small scale which is usually on the order of micrometers or even nanometers. As a novel material characterization tool, Atomic Force Microscopy (AFM) has shown great potential to characterize surface properties and pore structures at micrometer- and nanometer-scale and has been applied to investigate the elastic properties of organic components in shale by multiple researchers. Raman and FTIR can detect chemical bands by utilizing molecular vibration information. Because Raman and FTIR measurements are non-destructive, high sensitivity, and short in duration, they have been used extensively to study maturation processes of organic components in coal and shale samples. To some extent, these two methods can be considered as complementary to each other, and more comprehensive understanding about maturation processes of organic components can be achieved by combining these two methods. In this work, mechanical properties and chemical characteristics of four shale samples with different thermal maturities were investigated. Generally, this study had two objectives: (1) Characterize the mechanical properties of shale samples with different maturity levels through the novel AFM method, and (2) Explore the underlying cause for the change in elastic properties of shale samples from a chemical perspective through the complementary Raman and FTIR methods.