Browsing by Author "Tanaka, Martin L."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Biodynamic Analysis of Human Torso Stability using Finite Time Lyapunov ExponentsTanaka, Martin L. (Virginia Tech, 2008-03-25)Low back pain is a common medical problem around the world afflicting 80% of the population some time in their life. Low back injury can result from a loss of torso stability causing excessive strain in soft tissue. This investigation seeks to apply existing methods to new applications and to develop new methods to assess torso stability. First, the time series averaged finite time Lyapunov exponent is calculated from data obtained during seated stability experiments. The Lyapunov exponent is found to increase with increasing task difficulty. Second, a new metric for evaluating torso stability is introduced, the threshold of stability. This parameter is defined as the maximum task difficulty in which dynamic stability can be maintained for the test duration. The threshold of stability effectively differentiates torso stability at two levels of visual feedback. Third, the state space distribution of the finite time Lyapunov exponent (FTLE) field is evaluated for deterministic and stochastic systems. Two new methods are developed to generate the FTLE field from time series data. Using these methods, Lagrangian coherent structures (LCS) are found for an inverted pendulum, the Acrobot, and planar wobble chair models. The LCS are ridges in the FTLE field that separate two inherently different types of motion when applied to rigid-body dynamic systems. As a result, LCS can be used to identify the boundaries of the basin of stability. Finally, these new methods are used to find the basin of stability from time series data collected from torso stability experiments. The LCS and basins of stability provide a richer understanding into the system dynamics when compared to existing methods. By gaining a better understanding of torso stability, it is hoped this knowledge can be used to prevent low back injury and pain in the future. These new methods may also be useful in evaluating other biodynamic systems such as standing postural sway, knee stability, or hip stability as well as time series applications outside the area of biomechanics.
- Mathematical Modeling of Vascular Tumor Growth and DevelopmentCooper, Michele (Virginia Tech, 2010-05-12)Mathematical modeling of cancer is of significant interest due to its potential to aid in our understanding of the disease, including investigation into which factors are most important in the progression of cancer. With this knowledge and model different paths of treatment can be examined; (e.g. simulation of different treatment techniques followed by the more costly venture of testing on animal models). Significant work has been done in the field of cancer modeling with models ranging from the more broad systems, avascular tumor models, to smaller systems, models of angiogenic pathways. A preliminary model of a vascularized tumor has been developed; the model is based on fundamental principles of mechanics and will serve as the framework for a more detailed model in the future. The current model is a system of nonlinear partial differential equations (PDEs) separated into two basic sub-models, avascular and angiogenesis. The avascular sub-model is primarily based of Fickian diffusion of nutrients into the tumor. While the angiogenesis sub-model is based on the diffusion and chemotaxis of active sprout tips into the tumor. These two portions of the models allow the effects of microvessels on nutrient concentration within the tumor, as well as the effect of the tumor in driving angiogenesis, to be examined. The results of the model have been compared to experimental measurements of tumor growth over time in animal models, and have been found to be in good agreement with a correlation coefficient of (r2=0.98).