Browsing by Author "Tang, Hui"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- The 2015 landslide and tsunami in Taan Fiord, AlaskaHigman, Bretwood; Shugar, Dan H.; Stark, Colin P.; Ekstrom, Goran; Koppes, Michele N.; Lynett, Patrick; Dufresne, Anja; Haeussler, Peter J.; Geertsema, Marten; Gulick, Sean; Mattox, Andrew; Venditti, Jeremy G.; Walton, Maureen A. L.; McCall, Naoma; Mckittrick, Erin; MacInnes, Breanyn; Bilderback, Eric L.; Tang, Hui; Willis, Michael J.; Richmond, Bruce; Reece, Robert S.; Larsen, Chris; Olson, Bjorn; Capra, James; Ayca, Aykut; Bloom, Colin; Williams, Haley; Bonno, Doug; Weiss, Robert; Keen, Adam; Skanavis, Vassilios; Loso, Michael (Springer Nature, 2018-09-06)Glacial retreat in recent decades has exposed unstable slopes and allowed deep water to extend beneath some of those slopes. Slope failure at the terminus of Tyndall Glacier on 17 October 2015 sent 180 million tons of rock into Taan Fiord, Alaska. The resulting tsunami reached elevations as high as 193 m, one of the highest tsunami runups ever documented worldwide. Precursory deformation began decades before failure, and the event left a distinct sedimentary record, showing that geologic evidence can help understand past occurrences of similar events, and might provide forewarning. The event was detected within hours through automated seismological techniques, which also estimated the mass and direction of the slide - all of which were later confirmed by remote sensing. Our field observations provide a benchmark for modeling landslide and tsunami hazards. Inverse and forward modeling can provide the framework of a detailed understanding of the geologic and hazards implications of similar events. Our results call attention to an indirect effect of climate change that is increasing the frequency and magnitude of natural hazards near glaciated mountains.
- Forward and Inverse Modeling of Tsunami Sediment TransportTang, Hui (Virginia Tech, 2017-04-21)Tsunami is one of the most dangerous natural hazards in the coastal zone worldwide. Large tsunamis are relatively infrequent. Deposits are the only concrete evidence in the geological record with which we can determine both tsunami frequency and magnitude. Numerical modeling of sediment transport during a tsunami is important interdisciplinary research to estimate the frequency and magnitude of past events and quantitative prediction of future events. The goal of this dissertation is to develop robust, accurate, and computationally efficient models for sediment transport during a tsunami. There are two different modeling approaches (forward and inverse) to investigate sediment transport. A forward model consists of tsunami source, hydrodynamics, and sediment transport model. In this dissertation, we present one state-of-the-art forward model for Sediment TRansport In Coastal Hazard Events (STRICHE), which couples with GeoClaw and is referred to as GeoClaw-STRICHE. In an inverse model, deposit characteristics, such as grain-size distribution and thickness, are inputs to the model, and flow characteristics are outputs. We also depict one trial-and-error inverse model (TSUFLIND) and one data assimilation inverse model (TSUFLIND-EnKF) in this dissertation. All three models were validated and verified against several theoretical, experimental, and field cases.
- A model for tsunami flow inversion from deposits (TSUFLIND)Tang, Hui; Weiss, Robert (Elsevier, 2015-12-01)
- Stratigraphic evidence of two historical tsunamis on the semi-arid coast of north-central ChileDePaolis, Jessica M.; Dura, Tina; MacInnes, Breanyn; Ely, Lisa L.; Cisternas, Marco; Carvajal, Matias; Tang, Hui; Fritz, Hermann M.; Mizobe, Cyntia; Wesson, Robert L.; Figueroa, Gino; Brennan, Nicole; Horton, Benjamin P.; Pilarczyk, Jessica E.; Corbett, D. Reide; Gill, Benjamin C.; Weiss, Robert (Pergamon-Elsevier, 2021-07-21)On September 16, 2015, a Mw 8.3 earthquake struck the north-central Chile coast, triggering a tsunami observed along 500 km of coastline, between Huasco (28.5°S) and San Antonio (33.5°S). This tsunami provided a unique opportunity to examine the nature of tsunami deposits in a semi-arid, siliciclastic environment where stratigraphic and sedimentological records of past tsunamis are difficult to distinguish. To improve our ability to identify such evidence, we targeted one of the few low-energy, organic-rich depositional environments in north-central Chile: Pachingo marsh in Tongoy Bay (30.3°S). We found sedimentary evidence of the 2015 and one previous tsunami as tabular sand sheets. Both deposits are composed of poorly to moderately sorted, gray-brown, fine-to medium-grained sand and are distinct from underlying and overlying organic-rich silt. Both sand beds thin (from ∼20 cm to <1 cm) and fine landward, and show normal grading. The older sand bed is thicker and extends over 125 m further inland than the 2015 tsunami deposit. To model the relative size of the tsunamis that deposited each sand bed, we employed tsunami flow inversion. Our results show that the older sand bed was produced by higher flow speeds and depths than those in 2015. Anthropogenic evidence along with 137Cs and 210Pb dating constrains the age of the older tsunami to the last ∼110 years. We suggest that the older sand bed was deposited by the large tsunami in 1922 CE sourced to the north of our study site. This deposit represents the first geologic evidence of a pre-2015 tsunami along the semi-arid north-central Chile coast and highlights the current and continuing tsunami hazard in the region.