Browsing by Author "Tao, C."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Dynamic interfaces in an organic thin filmTao, C.; Liu, Q.; Riddick, B. C.; Cullen, W. G.; Reutt-Robey, J.; Weeks, J. D.; Williams, E. D. (2008-10-28)Low-dimensional boundaries between phases and domains in organic thin films are important in charge transport and recombination. Here, fluctuations of interfacial boundaries in an organic thin film, acridine-9-carboxylic acid on Ag(111), have been visualized in real time and measured quantitatively using scanning tunneling microscopy. The boundaries fluctuate via molecular exchange with exchange time constants of 10-30 ms at room temperature, with length-mode fluctuations that should yield characteristic f(-1/2) signatures for frequencies less than approximately 100 Hz. Although acridine-9-carboxylic acid has highly anisotropic intermolecular interactions, it forms islands that are compact in shape with crystallographically distinct boundaries that have essentially identical thermodynamic and kinetic properties. The physical basis of the modified symmetry is shown to arise from significantly different substrate interactions induced by alternating orientations of successive molecules in the condensed phase. Incorporating this additional set of interactions in a lattice-gas model leads to effective multicomponent behavior, as in the Blume-Emery-Griffiths model, and can straightforwardly reproduce the experimentally observed isotropic behavior. The general multicomponent description allows the domain shapes and boundary fluctuations to be tuned from isotropic to highly anisotropic in terms of the balance between intermolecular interactions and molecule-substrate interactions.
- Experimentally engineering the edge termination of graphene nanoribbonsZhang, X.; Yazyev, O. V.; Feng, J.; Xie, L.; Tao, C.; Chen, Y. C.; Jiao, L.; Pedramrazi, Z.; Zettl, A.; Louie, S. G.; Dai, H.; Crommie, M. F. (2013-01-22)The edges of graphene nanoribbons (GNRs) have attracted much interest due to their potentially strong influence on GNR electronic and magnetic properties. Here we report the ability to engineer the microscopic edge termination of high-quality GNRs via hydrogen plasma etching. Using a combination of high-resolution scanning tunneling microscopy and first-principles calculations, we have determined the exact atomic structure of plasma-etched GNR edges and established the chemical nature of terminating functional groups for zigzag, armchair, and chiral edge orientations. We find that the edges of hydrogen-plasma-etched GNRs are generally flat, free of structural reconstructions, and terminated by hydrogen atoms with no rehybridization of the outermost carbon edge atoms. Both zigzag and chiral edges show the presence of edge states.
- Sampling-time effects for persistence and survival in step structural fluctuationsDougherty, D. B.; Tao, C.; Bondarchuk, O.; Cullen, W. G.; Williams, E. D.; Constantin, M.; Dasgupta, C.; Das Sarma, S. (American Physical Society, 2005-02-01)