Browsing by Author "Tao, Zhipeng"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Estradiol signaling mediates gender difference in visceral adiposity via autophagyTao, Zhipeng; Zheng, Louise D.; Smith, Cayleen; Luo, Jing; Robinson, Alex; Almeida, Fabio A.; Wang, Zongwei; Olumi, Aria F.; Liu, Dongmin; Cheng, Zhiyong (Springer Nature, 2018)Excessive adiposity (particularly visceral fat mass) increases the risks of developing metabolic syndrome. Women have lower deposit of visceral fat than men, and this pattern becomes diminished postmenopausally, but the underlying mechanism remains largely unknown. Here, we show that the gender difference in visceral fat distribution is controlled by an estradiol–autophagy axis. In C57BL/6J and wild-type control mice, a higher visceral fat mass was detected in the males than in the females, which was associated with lower expression of estrogen receptor α (ERα) and more active autophagy in males vs. females. However, deletion of ERα normalized autophagy activity and abolished the gender difference in visceral adiposity. In line with the adiposity-reducing effect of the ERα–autophagy axis, we found that downregulation of ERα and increased autophagy activity were required for adipogenesis, while induction of estradiol signaling dampened autophagy and drastically prevented adipogenesis. Mechanistically, the estradiol-ERα signaling activated mTOR, which phosphorylated and inhibited ULK1, thereby suppressing autophagy and adipogenesis. Together, our study suggests that the lower visceral adiposity in the females (vs. the males) arises from a more active estradiol-ERα signaling, which tunes down autophagy and adipogenesis.
- Estrogen signaling interacts with Sirt1 in adipocyte autophagyTao, Zhipeng (Virginia Tech, 2019-06-18)Obesity is a rapidly growing epidemic. It is associated with preventable chronic disease and vast healthcare cost in the United States (about 200 billion per year). Therefore, dissecting pathogenic mechanisms of obesity would provide effective strategies to prevent its development and reduce related cost. Obesity is characterized by excessive expansion of white adipose tissue (WAT). Autophagy, a cellular self-digestive process, is associated with WAT expansion and may be a promising target for combating obesity. Both hormone signaling (e.g., ERα) and energy sensing factors (e.g., Sirt1) control metabolism and prevent adiposity, and in which they have been shown to play collaborate roles. However, how autophagy is involved in ERα and Sirt1's inhibitory roles on adiposity is unknown. These questions have been addressed in my dissertation studies. To address this fundamental questions, I have established a method to monitor autophagy flux during adipocyte differentiation, which better reflected the dynamic process of autophagy. Compared with preadipocytes, autophagy flux activity was increased in mature adipocytes after differentiation. And then, my thesis project has addressed three main questions. Firstly, the gender difference in visceral fat distribution (Males have higher deposit of visceral fat than females) is controlled by an estradiol (E2)-autophagy axis. In C57BL/6J and wild type control mice, a higher visceral fat mass was detected in the males than in the females, which was associated with lower expression of estrogen receptor (ER) and more active autophagy in males vs. females. ER knockout normalized this difference. Mechanistically, E2-ER- mTOR-ULK1-autophagy signaling contributed to the gender difference in visceral fat distribution. Secondly, in vitro and in vivo studies demonstrated that Sirt1 suppressed autophagy and reduced adipogenesis and adiposity via inducing mTOR-ULK1 signaling. Specific activation and overexpression of Sirt1 induced mTOR-ULK1 signaling to suppress autophagy and adipogenesis. And knockdown of Sirt1 exhibited opposite effects. The first and second studies revealed that ER and Sirt1 acted on mTOR-ULK1 signaling pathway, underlying the importance of their interaction in inhibiting autophagy and adipogenesis. As such, the third study was conducted and it unraveled that ER acted as upstream of Sirt1, possibly through its direct binding to Sirt1 promoter. Specifically, E2 signaling suppressed autophagy and adipogenesis. But when Sirt1 was knockdown, the effects of E2 on autophagy and adipogenesis were abolished. Taken together, my dissertation project underscores the importance for future research to consider gender difference and how E2-ER-autophagy axis contributes to this difference in other metabolic diseases. Also, the unraveled interaction between ERα and Sirt1 might lead to new therapeutic approach to adiposity and metabolic dysfunction in post-menopausal women or individuals with abnormal estrogen secretion. For example, dietary intervention or exercise challenge to activate Sirt1 may partially compensate estrogen deficiency.
- FoxO1 interacts with transcription factor EB and differentially regulates mitochondrial uncoupling proteins via autophagy in AdipocytesLiu, Longhua; Tao, Zhipeng; Zheng, Louise D.; Brooke, Joseph P.; Smith, Cayleen M.; Liu, Dongmin; Long, Yun Chau; Cheng, Zhiyong (Nature, 2016-10-03)Mitochondrial uncoupling proteins (UCPs) are inducible and play an important role in metabolic and redox homeostasis. Recent studies have suggested that FoxO1 controls mitochondrial biogenesis and morphology, but it remains largely unknown how FoxO1 may regulate mitochondrial UCPs. Here we show that FoxO1 interacted with transcription factor EB (Tfeb), a key regulator of autophagosome and lysosome, and mediated the expression of UCP1, UCP2 and UCP3 differentially via autophagy in adipocytes. UCP1 was down-regulated but UCP2 and UCP3 were upregulated during adipocyte differentiation, which was associated with increased Tfeb and autophagy activity. However, inhibition of FoxO1 suppressed Tfeb and autophagy, attenuating UCP2 and UCP3 but increasing UCP1 expression. Pharmacological blockade of autophagy recapitulated the effects of FoxO1 inhibition on UCPs. Chromatin immunoprecipitation assay demonstrated that FoxO1 interacted with Tfeb by directly binding to its promoter, and silencing FoxO1 led to drastic decrease in Tfeb transcript and protein levels. These data provide the first line of evidence that FoxO1 interacts with Tfeb to regulate autophagy and UCP expression in adipocytes. Dysregulation of FoxO1→autophagy→UCP pathway may account for metabolic changes in obesity.
- FoxO1 regulates adipose transdifferentiation and iron influx by mediating Tgf beta 1 signaling pathwayShi, Limin; Tao, Zhipeng; Zheng, Louise; Yang, Jinying; Hu, Xinran; Scott, Karen; de Kloet, Annette; Krause, Eric; Collins, James F.; Cheng, Zhiyong (Elsevier, 2023-07)Adipose plasticity is critical for metabolic homeostasis. Adipocyte transdifferentiation plays an important role in adipose plasticity, but the molecular mechanism of transdifferentiation remains incompletely understood. Here we show that the transcription factor FoxO1 regulates adipose transdifferentiation by mediating Tgf beta 1 signaling pathway. Tgf beta 1 treatment induced whitening phenotype in beige adipocytes, reducing UCP1 and mitochondrial capacity and enlarging lipid droplets. Deletion of adipose FoxO1 (adO1KO) dampened Tgf beta 1 signaling by downregulating Tgfbr2 and Smad3 and induced browning of adipose tissue in mice, increasing UCP1 and mitochondrial content and activating metabolic pathways. Silencing FoxO1 also abolished the whitening effect of Tgf beta 1 on beige adipocytes. The adO1KO mice exhibited a significantly higher energy expenditure, lower fat mass, and smaller adipocytes than the control mice. The browning phenotype in adO1KO mice was associated with an increased iron content in adipose tissue, concurrent with upregulation of proteins that facilitate iron uptake (DMT1 and TfR1) and iron import into mitochondria (Mfrn1). Analysis of hepatic and serum iron along with hepatic iron-regulatory proteins (ferritin and ferroportin) in the adO1KO mice revealed an adipose tissue-liver crosstalk that meets the increased iron requirement for adipose browning. The FoxO1-Tgf beta 1 signaling cascade also underlay adipose browning induced by beta 3-AR agonist CL316243. Our study provides the first evidence of a FoxO1-Tgf beta 1 axis in the regulation of adipose browning-whitening trans-differentiation and iron influx, which sheds light on the compromised adipose plasticity in conditions of dysregulated FoxO1 and Tgf beta 1 signaling.
- Sirt1 coordinates with ERα to regulate autophagy and adiposityTao, Zhipeng; Shi, Limin; Parke, Jane; Zheng, Louise; Gu, Wei; Dong, X. Charlie; Liu, Dongmin; Wang, Zongwei; Olumi, Aria F.; Cheng, Zhiyong (2021-03-15)Sex difference in adiposity has long been recognized but the mechanism remains incompletely understood. Previous studies suggested that adiposity was regulated by autophagy in response to energy status change. Here, we show that the energy sensor Sirt1 mediates sex difference in adiposity by regulating autophagy and adipogenesis in partnership with estrogen receptor α (ERα). Autophagy and adipogenesis were suppressed by Sirt1 activation or overexpression, which was associated with reduced sex difference in adiposity. Mechanistically, Sirt1 deacetylated and activated AKT and STAT3, resulting in suppression of autophagy and adipogenesis via mTOR-ULK1 and p55 cascades. ERα induced Sirt1 expression and inhibited autophagy in adipocytes, while silencing Sirt1 reversed the effects of ERα on autophagy and promoted adipogenesis. Moreover, Sirt1 deacetylated ERα, which constituted a positive feedback loop in the regulation of autophagy and adiposity. Our results revealed a new mechanism of Sirt1 regulating autophagy in adipocytes and shed light on sex difference in adiposity.