Browsing by Author "Taylor, Ashley R."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- The Change: A Narrative-Informed Case Study Exploring the Tension between Structures and Agency in the Educational Trajectories of Engineering Students from Underserved BackgroundsTaylor, Ashley R. (Virginia Tech, 2020-02-05)In the United States context, there is a particularly prevalent dialogue about the transformative power of an engineering degree for underserved students. Long positioned as a mechanism for moving up the social ladder, engineering education is often discussed as a mechanism for upward mobility, promising underserved students the opportunity to climb. However, a critical examination of who enrolls and persists in engineering degree programs suggests not everyone can equitably leverage the transformative power of an engineering degree, with persistent inequities for underserved students. Though literature highlights systemic barriers faced by underserved engineering students, much less is known about how underserved students navigate barriers to pursue an engineering bachelor's degree. Accordingly, the purpose of my study was to explore how students from underserved backgrounds navigate their educational trajectories, focusing on the interplay between structures and agency. Using a Bourdieusian lens, my study was guided by the overarching research question: In their narratives, how do students from underserved backgrounds describe navigating their educational trajectories towards a bachelor's engineering degree? I used a single case study methodology with embedded units of analysis to explore this research question. My primary data sources included narrative interviews with 32 underserved engineering students and geospatial community-level data extrapolated from students' home zip codes. My results indicate that underserved engineering students describe a variety of strategies to enact agency by planning, optimizing, and, at times, redirecting their educational trajectories. This study also highlights the influence of family, community, economic, and political environments on the educational journeys of underserved engineering students, as students described navigating and adapting to these various social environments. Students also describe their environments as dynamic, with trajectories changing based on critical incidents such as a parent illness or loss of work. Lastly, students' narratives highlight a diverse range of reasons for pursuing engineering, which often extended beyond private goods approaches to engineering education. My results present implications for engineering education, the most notable of which is that underserved students are not a monolithic group and represent a diverse range of lived experiences. My results also highlight agency as a collective endeavor, challenging popular notions that agency is operationalized at the level of a single individual. Lastly, students' lived experiences with material hardship highlight the dynamic and multidimensional nature of economic disadvantage. Such insights compel engineering educators to reexamine how we conceptualize and measure economic disadvantage in higher education. Ultimately, this research highlights opportunities to increase access and equity in engineering education for underserved students.
- Innovating for Global Health through Community-Based Participatory Research: Design of Mechanical Suction Machines for Rural Health Clinics in MalawiTaylor, Ashley R. (Virginia Tech, 2016-09-21)Clinicians in low and middle-income countries (LMIC) face many challenges, including high patient-to-staff ratios, limited resources, and inconsistent access to electricity. This research aimed to improve health outcomes in LMIC through an enlightened understanding of challenges associated with healthcare technology. To understand LMIC barriers to acquiring, maintaining, and repairing medical equipment, a community-based participatory study was conducted at three clinical settings in southern Malawi. Thirty-six clinical staff participated in surveys and focus groups to provide information on medical device challenges. Results from the study emphasize the importance of community-based participatory innovation to improve global health. Many clinical staff expressed frustration regarding inability to prevent patient mortality attributed to equipment failure. Data from the community-based participatory study of medical technology conducted in Malawi revealed key insights for designing for low and middle income countries, and more specifically, for communities in southern Malawi. Specifically, partner communities identified mechanical suction machines as a top priority for design innovation. Working with technical and clinical staff in Malawian communities, a prototype mechanical suction machine was designed and constructed. This work suggests that engineers working in low and middle income countries face a unique sundry of design requirements that require an intimate understanding of the local community, including community leaders, community beliefs and values, and locally available resources. Technology innovation for global health should incorporate community expertise and assets, and health and technical education efforts should be developed to increase working knowledge of medical devices.
- Leveraging an Open-Access Digital Design Notebook for Graduate Biomedical Engineering Education in NigeriaCasserly, Padraic; Dare, Ademola; Onuh, Joy; Baah, Williams; Taylor, Ashley R. (Springer, 2024-03-15)Amidst the dual challenges of an eight-month university closure from nationwide public university strikes in Nigeria and the lingering impacts of the Covid-19 pandemic, we needed to innovate the delivery of BME graduate curriculum to ensure graduate students continued to progress in their studies. To ensure BME graduate students were engaging in team-based, clinician-identified engineering design challenges, we developed a digital design notebook (DDN) using Google Sites as an open-access, collaborative tool for scaffolding and documenting the engineering design process. Student design teams remotely uploaded digital content documenting their project work onto scaffolded DDNs created by program instructors. DDNs were purposefully designed to shepherd students through the design process such that each phase of the design process corresponded to an editable "page" of the DDN. Video lectures, learning resources, assignments, and other program information were embedded into the DDN for students to access throughout their design challenge. Project mentors and program instructors remotely monitored and assessed students' work using the DDN. At the end of the design challenge, students effectively created an e-portfolio which showcased the work they conducted to build a biomedical prototype. Designing and implementing the DDN builds on previous research which demonstrates that "structured" design notebooks can be used as effective tools in engineering design and design thinking education. Our work also leverages educational frameworks for infusing engineering design into existing graduate biomedical engineering curriculum in Nigeria.
- A Sustainable Engineering Solution for Paediatric Dehydration in Low-Resource Clinical EnvironmentsTaylor, Ashley R.; Turovskiy, Jeffrey; Drew, Benjamin; Muelenaer, Andre A.; Redican, Kerry J.; Kochersberger, Kevin B.; Bickford, Lissett R. (Engineers Without Borders Australia, 2016)Engineering efforts in low resource environments pose a unique set of challenges, requiring an in-depth understanding of local needs, comprehensive mapping of community resources, and extensive collaboration with local expertise. The importance of these principles is demonstrated in this paper by detailing the novel design and field demonstration of an affordable, locally manufactured intravenous fluid regulation device. Collaboration with clinical personnel in Uganda and Malawi guided device design. In-country physicians emphasised the need to regulate volume of intravenous (IV) fluid delivered to a paediatric patient without use of electricity. The proposed device regulates IV fluid delivery within ±20 mL of total prescribed dosage, providing a method of reducing fatalities caused by over-hydration in low resource environments; the feasibility of building the device from local resources was demonstrated by a field research team in Malawi. The device was successfully constructed entirely from local resources for a total cost of $46.21 (USD). Additionally, the device was demonstrated in rural clinics where 89 % of surveyed clinical staff reported that they would use the device to regulate IV fluid delivery. This paper emphasises the importance of collaborating with communities for community-based engineering solutions. Mapping community assets and collaborating with local expertise are crucial to success of engineering efforts. Long-term, community-based efforts are likely to sustainably improve health outcomes and strengthen economies of communities worldwide.