Browsing by Author "Tekiela, Daniel R."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Global Invader Impact Network (GIIN): toward standardized evaluation of the ecological impacts of invasive plantsBarney, Jacob; Tekiela, Daniel R.; Barrios-Garcia, Maria Noelia; Dimarco, Romina D.; Hufbauer, Ruth A.; Leipzig-Scott, Peter; Nuñez, Martin A.; Pauchard, Aníbal; Pyšek, Petr; Vítková, Michaela; Maxwell, Bruce D. (Wiley, 2015-06-30)Terrestrial invasive plants are a global problem and are becoming ubiquitous components of most ecosystems. They are implicated in altering disturbance regimes, reducing biodiversity, and changing ecosystem function, sometimes in profound and irreversible ways. However, the ecological impacts of most invasive plants have not been studied experimentally, and most research to date focuses on few types of impacts, which can vary greatly among studies. Thus, our knowledge of existing ecological impacts ascribed to invasive plants is surprisingly limited in both breadth and depth. Our aim was to propose a standard methodology for quantifying baseline ecological impact that, in theory, is scalable to any terrestrial plant invader (e.g., annual grasses to trees) and any invaded system (e.g., grassland to forest). The Global Invader Impact Network (GIIN) is a coordinated distributed experiment composed of an observational and manipulative methodology. The protocol consists of a series of plots located in (1) an invaded area; (2) an adjacent removal treatment within the invaded area; and (3) a spatially separate uninvaded area thought to be similar to pre-invasion conditions of the invaded area. A standardized and inexpensive suite of community, soil, and ecosystem metrics are collected allowing broad comparisons among measurements, populations, and species. The method allows for one-time comparisons and for long-term monitoring enabling one to derive information about change due to invasion over time. Invader removal plots will also allow for quantification of legacy effects and their return rates, which will be monitored for several years. GIIN uses a nested hierarchical scale approach encompassing multiple sites, regions, and continents. Currently, GIIN has network members in six countries, with new members encouraged. To date, study species include representatives of annual and perennial grasses; annual and perennial forbs; shrubs; and trees. The goal of the GIIN framework is to create a standard yet flexible platform for understanding the ecological impacts of invasive plants, allowing both individual and synthetic analyses across a range of taxa and ecosystems. If broadly adopted, this standard approach will offer unique insight into the ecological impacts of invasive plants at local, regional, and global scales.
- Quantifying Microstegium vimineum Seed Movement by Non-Riparian Water Dispersal Using an Ultraviolet-Marking Based Recapture MethodTekiela, Daniel R.; Barney, Jacob (PLOS, 2013-09-12)Microstegium vimineum is a shade tolerant annual C4 invasive grass in the Eastern US, which has been shown to negatively impact species diversity and succession in hardwood forests. To date, empirical studies have shown that population expansion is limited to <1 m yr−1, which is largely driven by gravity dispersal. However, this likely does not fully account for all mechanisms of population-scale dispersal as we observe greater rates of population expansion. Though water, both riparian and non-riparian water (i.e., ephemeral overland flow), have been speculated mechanisms for M. vimineum dispersal, few studies have empirically tested this hypothesis. We designed an experiment along the slopes of a Southwest Virginia hardwood forest to test the role of non-riparian water on local seed dispersal. We developed a seed marking technique by coating each seed with an ultraviolet (UV) powder that did not affect buoyancy to aid in situ seed recapture. Additionally, a new image analysis protocol was developed to automate seed identification from UV photos. Total seed mobility (summation of individual seed movement within each transect) was positively correlated with precipitation. Over a period of one month with 52.32 mm of precipitation, the maximum dispersal distance of any single recaptured seed was 2.4 m, and the average distance of dispersed seed was 0.21±0.04 m. This is the first quantitative evidence of non-riparian water dispersal in a forest understory, which accounts for an additional pathway of population expansion.
- System-level changes following invasion caused by disruption of functional relationships among plant and soil propertiesTekiela, Daniel R.; Barney, Jacob (Ecological Society of America, 2015-12)The ecological impacts of invasive plants have served to justify the cost of their management, which is estimated to exceed $1 billion annually in the US alone. However, our understanding of the ecological impacts of most invasive plants is extremely limited, and when known, interpretation is confounded with varied measurements and methods. While this can provide important information about specific components of ecosystem function, it limits our understanding of the broader scope of impacts any one species may have. Using Japanese stiltgrass (Microstegium vimineum) as a study system, our objectives were to (1) survey a broad suite of 29 important ecological impact metrics (EIMs), (2) identify invader cover-EIM relationships, and (3) test if the comparative reference (uninvaded or invader removal) influences interpretation. Japanese stiltgrass had the strongest effect on the plant community, followed by soil properties, soil nutrients, and other abiotic/biotic factors. Many EIM values differed among reference types, and plant community EIMs were reduced with increasing Japanese stiltgrass abundance. For example, plant biodiversity was lower in the invasion when compared to both removed and uninvaded sites; however, soil organic matter was higher only in the uninvaded site when compared to the invasion. The integrative ecosystem metric E(c) also showed that the system overall was impacted by the Japanese stiltgrass invasion, and this varied among sites. Interestingly, relationships among EIMs were also changed by the presence of Japanese stiltgrass. For example, a strong correlation between pH and soil organic matter disappeared when Japanese stiltgrass was present. Together this suggests that this invaded ecosystem functions in a different way through both individual and correlated alterations to ecosystem properties.
- What is the "real" impact of invasive plant species?Barney, Jacob; Tekiela, Daniel R.; Dollete, Eugene S. J.; Tomasek, Bradley J. (Ecological Society of America, 2013-08)Invasive plant species should be evaluated and prioritized for management according to their impacts, which include reduction in native diversity, changes to nutrient pools, and alteration of fire regimes. However, the impacts of most invasive species have not been quantified and, when measured, those impacts are based on a limited number of response metrics. As a result, invasion ecology has been overwhelmed by speculation and bias regarding the ecological consequences of invasive plants. We propose a quantitative mathematical framework that integrates any number of impact metrics as a function of groundcover and geographic extent. By making relative comparisons between invaded and uninvaded landscapes at the population scale, which results in a percent change for each metric, we overcome previous limitations that confounded the integration of metrics based on different units. Our model offers a quantitative approach to ecological impact that may allow identification of the transition from benign introduction to impactful invader, while also allowing empirical comparisons at the species and population levels that will be useful for management prioritization.