Browsing by Author "Telionis, Demetri P."
Now showing 1 - 20 of 68
Results Per Page
Sort Options
- Active Control of Separated Flow over a Circular-Arc AirfoilMiranda, Sergio (Virginia Tech, 2000-05-08)An experimental study of active control of fully separated flow over a symmetrical circular-arc airfoil at high angles of attack was performed. The experiments were carried out in a low-speed, open circuit wind tunnel. Angles of attack from 10 to 40 degrees were tested. Low-power input, unsteady excitation was applied to the leading or trailing edge shear layers. The actuation was provided by the periodic oscillation of a 4-percent-chord flap placed on the suction side of the airfoil and facing the sharp edge. Vortex-shedding frequencies were measured and harmonic combinations selected as the applied actuator frequencies. Pressure measurements over the airfoil show that the control increased the normal force coefficient by up to 70%. This supports the idea of vortex capture in the time-averaged sense, enhancing the lift on the airfoil by managing the shear layer roll up. The results indicate the viability of the control of large-scale flow fields by exploiting the natural amplification of disturbances triggered by small-scale actuators. The application of flow control on sharp-edged aircraft wings could lead to improved maneuverability, innovative flight control and weight reduction. These can be achieved by inexpensive, low-power, rugged actuators.
- The Aerodynamics of Low Sweep Delta WingsRullan, Jose Miguel (Virginia Tech, 2008-04-21)The aerodynamics of wings with moderately swept wings continues to be a challenging and important problem due to the current and future use in military aircraft. And yet, there is very little work devoted to the understanding of the aerodynamics of such wings. The problem is that such wings may be able to sustain attached flow next to broken-down delta-wing vortices, or stall like two-dimensional wings, while shedding vortices with generators parallel to their leading edge. To address this situation we studied the flow field over diamond-shaped planforms and sharp-edged finite wings. Possible mechanisms for flow control were identified and tested. We explored the aerodynamics of swept leading edges with no control. We presented velocity and vorticity distributions along planes normal and parallel to the free stream for wings with diamond shaped planform and sharp leading edges. We also presented pressure distributions over the suction side of the wing. Results indicated that in the inboard part of the wing, an attached vortex can be sustained, reminiscent of delta-wing type of a tip vortex, but further in the outboard region 2-D stall dominated even at 13° AOA and total stall at 21° AOA. To explore the unsteady flow field and the effectiveness of leading-edge control of the flow over a diamond-planform wing at 13° AOA, we employed Particle Image Velocimetry (PIV) at a Reynolds number of 43,000 in a water tunnel. Our results indicated that two-D-like vortices were periodically generated and shed. At the same time, an underline feature of the flow, a leading edge vortex was periodically activated, penetrating the separated flow, eventually emerging downstream of the trailing edge of the wing. To study the motion and its control at higher Reynolds numbers, namely 1.3 x 106 we conducted experiments in a wind tunnel. Three control mechanisms were employed, an oscillating mini-flap, a pulsed jet and spanwise continuous blowing. A finite wing with parallel leading and trailing edges and a rectangular tip was swept by 0°, 20°, and 40° and the pulsed jet employed as is control mechanism. A wing with a diamond-shaped-planform, with a leading edge sweep of 42°, was tested with the mini-flap. Surface pressure distributions were obtained and the control flow results were contrasted with the no-control cases. Our results indicated flow control was very effective at 20° sweep, but less so at 40° or 42°. It was found that steady spanwise blowing is much more effective at the higher sweep angle.
- Algebraically growing waves in ducts with sheared mean flowNayfeh, Ali H.; Telionis, Demetri P. (Acoustical Society of America, 1974)Standing or traveling waves which vary algebraically with the axial distance in uniform ducts with sheared mean velocity profiles are investigated. The results show that such waves are not possible for ducts with uniform cross sections and fully developed mean flows.
- All The King's Horses: The Delta Wing Leading-Edge Vortex System Undergoing Vortex Breakdown: A Contribution to its characterization and Control under Dynamic ConditionsSchaeffler, Norman W. (Virginia Tech, 1998-04-20)The quality of the flow over a 75 degree-sweep delta wing was documented for steady angles of attack and during dynamic maneuvers with and without the use of two control surfaces. The three-dimensional velocity field over a delta wing at a steady angle of attack of 38 degrees and Reynolds number of 72,000 was mapped out using laser-Doppler velocimetry over one side of the wing. The three-dimensional streamline and vortex line distributions were visualized. Isosurfaces of vorticity, planar distributions of helicity and all three vorticity components, and the indicator of the stability of the core were studied and compared to see which indicated breakdown first. Visualization of the streamlines and vortex lines near the core of the vortex indicate that the core has a strong inviscid character, and hence Reynolds number independence, upstream of breakdown, with viscous effects becoming more important downstream of the breakdown location. The effect of cavity flaps on the flow over a delta wing was documented for steady angles of attack in the range 28 degrees to 42 degrees by flow visualization and surface pressure measurements at a Reynolds number of 470,000 and 1,000,000, respectfully. It was found that the cavity flaps postpone the occurrence of vortex breakdown to higher angles of attack than can be realized by the basic delta wing. The effect of continuously deployed cavity flaps during a dynamic pitch-up maneuver of a delta wing on the surface pressure distribution were recorded for a reduced frequency of 0.0089 and a Reynolds number of 1,300,000. The effect of deploying a set of cavity flaps during a dynamic pitch-up maneuver on the surface pressure distribution was recorded for a reduced frequency of 0.0089 and a Reynolds number of 1,300,000 and 187,000. The active deployment of the cavity flaps was shown to have a short-lived beneficial effect on the surface pressure distribution. The effect on the surface pressure distribution of the varying the reduced frequency at constant Reynolds number for a plain delta wing was documented in the reduced frequency range of 0.0089 to 0.0267. The effect of the active deployment of an apex flap during a pitch-up maneuver on the surface pressure distribution at Reynolds numbers of 532,000, 1,000,000, and 1,390,000 were documented with reduced frequencies of 0.0053 to 0.0114 with flap deployment locations in the range of 21° to 36° . The apex flap deployment was found to have a beneficial effect on the surface pressure distribution during the maneuver and in the post-stall regime after the maneuver is completed.
- The Application of CFD to Building Analysis and Design: A Combined Approach of an Immersive Case Study and Wind Tunnel TestingKim, Daeung (Virginia Tech, 2014-01-23)Computational Fluid Dynamics (CFD) can play an important role in building design. For all aspects and stages of building design, CFD can be used to provide more accurate and rapid predictions of building performance with regard to air flow, pressure, temperature, and similar parameters. Generally, the process involved in conducting CFD analyses is relatively complex and requires a good understanding of how best to utilize computational numerical methods. Moreover, the level of skill required to perform an accurate CFD analysis remains a challenge for many professionals particularly architects. In addition, the user needs to input a number of different items of information and parameters into the CFD program in order to obtain a successful and credible solution. This research seeks to improve the general understanding of how CFD can best be used as a design assistance tool. While there have been a number of quantitative studies suggesting CFD may be a useful tool for building related airflow assessment, few researchers have explored the more qualitative aspects of CFD, in particular developing a better understanding of the procedures required for the proper application of CFD to whole building analysis. This study therefore adopted a combined qualitative and quantitative methodology, with the researcher immersing himself into a case study approach and defining several lessons-learned that are documented and shared. This research will assist practicing architects and architecture students to better understand the application of CFD to building analysis and design.
- Assessing the Cardiovagal BaroreflexBehnam, Abrahm John (Virginia Tech, 2007-02-02)Abrupt decreases and increases in systolic arterial blood pressure produce baroreflex mediated shortening and lengthening, respectively, of the R-R interval. This phenomenon, otherwise known as the cardivagal baroreflex, is best described by the sigmoid relationship between R-R interval length and systolic blood pressure. The linear portion of this relationship is used to derive the slope or gain of the cardiovagal baroreflex. Importantly, lower levels of cardiovagal baroreflex have been associated with poor orthostatic tolerance and an increased cardiovascular disease-related mortality. The most commonly used and accepted technique to assess cardiovagal barorelex gain is the modified Oxford techinique. Bolus injections of sodium nitroprusside followed by phenylephrine HCL are used to decrease and raise blood pressure ~15 mmHg, respectively. The baroreflex control of the cardiac vagal outflow can then be assessed by the relation of the R-R interval to systolic blood pressure. However, the modified Oxford technique does not always reveal the nonlinear nature of baroreflex relations. The reasons for this has been unclear. Thus, analysis of baroreflex gain when nonlinearities are not revealed is problematic. Five classifications of baroreflex trials have been identified: acceptable, threshold-heavy, saturation-heavy, linear-heavy, and random trials. A new method of gain estimation was developed that combines the strengths of the current methods of gain estimation with the knowledge of the classifications of baroreflex trials. Using this method, cardiovagal baroreflex gain assessment can be maximized if threshold-heavy, saturation-heavy, and random trials are filtered out of the analysis and the manual method is used to estimate gain on the remaining trials. In addition, a link seems to exist between the variability of delta and the variability in baroreflex gain between different subjects.
- Biped robot with a vestibular systemHuang, Chuen-Chane (Virginia Tech, 1991-12-01)The kinematics and dynamics of two legged or biped walking is considered. The resulting governing equations include actuator torques for a robot and muscle generated torques for a human. These torques are those necessary at each joint of a leg, including the foot, for a successful stride. The equations are developed from a consistent set variables with respect to a single inertial reference frame. This single reference frame approach has not been used by previous investigators. Control of the joint torques makes biped walking an extraordinary complex problem from a dynamics and control viewpoint. The control scheme that is developed incorporates the use of the direction of gravity as an important element in the overall control. The inclusion of gravity in biped robot walking has not previously been properly considered in other works. A way is described to separate gravity and acceleration which are measured by an accelerometer which is on the robot. This system incorporates the use of angular motion sensing of the robot segment that contains the linear accelerometers. This system was formulated based on human motion sensing and what probably is present in the human central nervous system for processing these signals.
- Boundary-layer analysis and measurement of Newtonian and non-Newtonian fluidsKim, Byung Kyu (1984)The velocity fields around a circular cylinder in a crossflow of drag-reducing polymeric solutions and water were experimentally investigated using a laser-Doppler velocimeter. Measured boundary-layer velocity profiles indicated that the flow parameter controlling the drag on a bluff body in drag-reducing flows is the turbulence intensity rather than the Reynolds number. For turbulence intensity less than 0.7% polymer addition induced delayed separation. For turbulence intensity over 1% the opposite effect was true. Time-averaged velocity profiles of water did not show any significant difference between self-induced and forced oscillatory flows. Heat, mass and momentum transfer of Newtonian and power-law non-Newtonian fluids were theoretically investigated using an implicit finite-difference scheme. The results clearly· indicated that shear-dependent non-Newtonian viscosity controls the entire transport processes of the power-law fluids. For the major portion of the boundary layer, it was found that the more shear thinning the material exhibits, the lower the skin friction and the higher the heat transfer result. Accounting for the motion of the stagnation point provided an improved prediction of heat transfer for Newtonian fluid.
- Characteristics of the High Speed Gas-Liquid InterfaceWeiland, Christopher Jude (Virginia Tech, 2009-12-02)The objective of this dissertation was to investigate physical characteristics of high speed gas-liquid interfaces for the cases of subsonic, transonic, and supersonic gas jets submerged underwater and the transient development of an underwater projectile reaching the supercavitating state. These studies are motivated by the need to understand the basic physics associated with a novel submersible missile launcher termed the Water Piercing Missile Launcher (WPML). This dissertation presents the first study of high speed round and rectangular gas jets submerged underwater utilizing a global optical measurement technique. This technique allows quantitative measurement of the entire gas jet and the interfacial motion. Experimental results indicate that the penetration of the gas jets into a quiescent liquid is strongly influenced by the injection mass flow and the nozzle geometry. In contrast, the oscillations of the interface are influenced by the injection Mach number. The transition from a momentum driven to a buoyant jet is determined using a characteristic length scale that appears to be in good agreement with experimental observations. Moreover, the unsteadiness of the interface appears to be governed by both Kevin-Helmholtz and Rayleigh-Taylor instabilities. This dissertation also contains the first study of a projectile accelerating to reach the supercavitating state. Experimental results show that the transient development of the supercavity is governed by the formation of a vortex ring. Nuclei are shed from the forebody of the accelerating projectile and are entrained in the vortex ring core where they are subjected to low pressure and subsequently expand rapidly. A characteristic time scale for this supercavity development is presented.
- A Comparative In Vitro Study of the Flow Characteristics Distal to Mechanical and Natural Mitral ValvesMace, Amber (Virginia Tech, 2002-12-16)Mechanical heart valve (MHV) flows are characterized by high shear stress, regions of recirculation, and high levels of turbulent fluctuations. It is well known that these flow conditions are hostile to blood constituents, which could lead to thromboembolism. In the ongoing effort to reduce long-term complications and morbidity, it is imperative that we better understand the flow characteristics of the natural valve as well as that of the mechanical valve. In this study, we overcome many of the limitations imposed by other measurement techniques by employing a powerful, high-speed Time-Resolved Digital Particle Image Velocimetry (TRDPIV) system to map the flow field. We compare the flows downstream from a St. Jude Medical bileaflet MHV, a porcine mitral valve (MV), and a combination of both valves to simulate the technique of chordal preservation. Instantaneous velocity fields and vorticity maps are presented, which provide detailed information about the development of the flow. Time-averaged velocity, vorticity, and turbulent kinetic energy measurements are also discussed. Asynchronous leaflet behavior was observed in all cases involving the mechanical valve. Extensive vortex formation and propagation are present distal to the MHV, which leads to high levels of jet dispersion. The porcine mitral jet exhibits lateral oscillatory behavior, but it does not disperse like the MHV. In the MHV/porcine combination system, the native tissue limits vortex propagation and jet dispersion. The results presented provide insight on the hemodynamic characteristics of natural and MHVs, reveal the detrimental character of asynchronous leaflet opening, document the mechanism of vortex formation and interaction distal to the valve, and illustrate the importance of chordal preservation. These results may improve MHV replacement clinical practice and/or motivate and aid the design of MHVs that better mimic natural mitral flow patterns.
- Compound Aircraft Transport: Wingtip-Docked Flight Compared to Formation FlightMagill, Samantha Anne (Virginia Tech, 1998-06-29)Compound Aircraft Transport (CAT) flight involves two or more aircraft using the resources of each other; a symbiotic relationship exists consisting of a host, the mothership aircraft and a parasite, the hitchhiker aircraft. Wingtip-docked flight is just as its name implies; the two aircraft are connected wingtip-to-wingtip. Formation flight describes multiple aircraft or flying objects that maintain a pattern or shape in the air. There are large aerodynamic advantages in CAT flight. The aforementioned wingtip-docked flight increases total span of the aircraft system, and formation flight utilizes the upwash from the trailing wingtip vortex of the lead aircraft (mothership) to reduce the energy necessary to achieve and/or maintain a specific flight goal for the hitchhiker and the system. The Stability Wind Tunnel (6 X 6 X 24 foot test section) at Virginia Tech, computational aerodynamic analysis with the vortex lattice method (VLM), and a desktop aircraft model were used to answer questions of the best location for a hitchhiker aircraft and analyze stability of the CAT system. Wind tunnel tests implemented a 1/32 scale F-84E model (hitchhiker) and an outboard wing portion representing a B-36 (mothership). These models were chosen to simulate flight tests of an actual wingtip-docked project, Tom Tom, in the 1950s. That project was terminated after a devastating accident that demonstrated a possible "flapping" motion instability. The wind tunnel test included a broad range of hitchhiker locations: varying spanwise gap distance, longitudinal or streamwise distance, and vertical location (above or below wing) with respect to a B-36-like wing. The data showed very little change in the aerodynamic forces of the mothership, and possibilities of large benefits in lift and drag for the hitchhiker when located slightly aft and inboard with respect to the mothership. Three CAT flight configurations were highlighted: wingtip-docked, close formation, and towed formation. The wingtip-docked configuration had a 20-40 percent performance benefit for the hitchhiker compared to solo flight. The close formation configuration had performance benefits for the hitchhiker approximately 10 times that of solo flight, and the towed formation was approximately 8 times better than solo flight. The VLM analysis completed and reenforced the experimental wind tunnel data. A modified VLM program (VLM CAT) incorporated multiple aircraft in various locations as well as additional calculations for induced drag. VLM CAT results clearly followed the trends seen in the wind tunnel data, but since VLM did not model the fuselage, has assumptions like a flat wake, and is an inviscid computation it did not predict the large benefits or excursions as seen in the wind tunnel data. Increases in performance for the hitchhiker in VLM CAT were on the order of 3 to 4 times that of the hitchhiker in solo flight, while the wind tunnel study saw up to 10 times that of solo flight. VLM CAT is a valuable tool in supplying quick analysis of position and planform effects in CAT flight. Modifications to a desktop F-16 dynamic simulation have been developed to investigate the stability of wingtip-docked flight. These modifications analyze the stability issues linked with sideslip angle as seen by the Tom Tom Project test pilot, when he entered docking maneuvers with 5 degrees yaw to simulate a ``tired pilot". The wingtip-docked system was determined to have an unstable aperiodic mode for sideslip angle greater than 0.0 degrees and an unstable oscillatory mode for sideslip angle greater than 2.0 degrees. There is a small range of sideslip angle that is a stable oscillatory mode, sideslip angle between 0.0 and 2.0 degrees. The variables, altitude and speed, yield little effect on the stability of the system. The sensitivity analysis was indeterminate in distinguishing a state driving the instability, but the analysis was conclusive in verifying the lateral-longitudinal (roll-pitch) coupled motion observed by test pilots in wingtip-docked flight experiments. The parameter with the largest influence on the instability was the change in pitch angular acceleration with respect to roll angle. The aerodynamic results presented in this study have determined some important parameters in the location of a hitchhiker with respect to a mothership. The largest aerodynamic benefits are seen when the hitchhiker wingtip is slightly aft, inboard and below the wingtip of the mothership. In addition, the stability analysis has identified an instability in the CAT system in terms of sideslip angle, and that the wingtip-docked hitchhiker is coupled in lateral and longitudinal motion, which does concur with the divergent "flapping" motion about the hinged rotational axis experienced by the Tom Tom Project test pilot.
- Compression Creep Rupture of an E-glass/Vinyl Ester Composite Subjected to Combined Mechanical and Fire Loading ConditionsBoyd, Steven Earl (Virginia Tech, 2006-11-20)Polymer matrix composites are seeing increasing use in structural systems (e.g. ships, bridges) and require a quantitative basis for describing their performance under combined mechanical load and fire. Although much work has been performed to characterize the flammability, fire resistance and toxicity of these composite systems, an understanding of the structural response of sandwich type structures and laminate panels under combined mechanical and thermal loads (simulating fire conditions) is still largely unavailable. Therefore a research effort to develop a model to describe the structural response of these glass/vinyl esters systems under fire loading conditions is relevant to the continuing and future application of polymer matrix composites aboard naval ships. The main goal of the effort presented here is to develop analytical models and finite element analysis methods and tools to predict limit states such as local compression failures due to micro-buckling, residual strength and times to failure for composite laminates at temperatures in the vicinity of the glass transition where failure is controlled by viscoelastic effects. Given the importance of compression loading to a structure subject to fire exposure, the goals of this work are succinctly stated as the:(a)Characterization of the non-linear viscoelastic and viscoplastic response of the E-glass/vinyl ester composite above Tg. (b)Description of the laminate compression mechanics as a function of stress and temperature including viscoelasticity.(c)Viscoelastic stress analysis of a laminated panel ([0/+45/90/-45/0]S) using classical lamination theory (CLT). Three manuscripts constitute this dissertation which is representative of the three steps listed above. First, a detailed characterization of the nonlinear thermoviscoelastic response of Vetrotex 324/Derakane 510A - 40 through Tg was conducted using the Time - Temperature - Stress - Superposition Principle (TTSSP) and Zapas - Crissman model. Second, the modeling approach and viscoelastic relaxation mechanism is validated by substituting the shear relaxation modulus into a compression strength model to predict lifetimes for isothermal and one sided heating of unidirectional laminates. Finally, viscoelastic stress analysis using CLT is performed for a general laminated panel to predict lifetimes under one sided heating. Results indicate that when temperatures remain in the vicinity of Tg, the laminate behavior is controlled by thermoviscoelasticity.
- A Computational Model for Two-Phase Ejector FlowMenegay, Peter (Virginia Tech, 1997-01-29)A CFD model to simulate two-phase flow in refrigerant ejectors is described. This work is part of an effort to develop the ejector expansion refrigeration cycle, a device which increases performance of a standard vapor compression cycle by replacing the throttling valve with a work-producing ejector. Experimental results have confirmed the performance benefit of the ejector cycle, but significant improvement can be obtained by optimally designing the ejector. The poorly understood two-phase, non-equilibrium flow occuring in the ejector complicates this task. The CFD code is based on a parabolic two-fluid model. The applicable two-phase flow conservation equations are presented. Also described are the interfacial interaction terms, important in modelling non-equilibrium effects. Other features of the code, such as a mixing length turbulence model and wall function approximation, are discussed. Discretization of the equations by the control volume method and organization of the computer program is described. Code results are shown and compared to experimental data. It is shown that experimental pressure rise through the mixing section matches well against code results. Variable parameters in the code, such as droplet diameter and turbulence constants, are shown to have a large influence on the results. Results are shown in which an unexpected problem, separation in the mixing section, occurs. Also described is the distribution of liquid across the mixing section, which matches qualitative experimental observations. From these results, conclusions regarding ejector design and two-phase CFD modelling are drawn.
- Concept Study of a High-Speed, Vertical Take-Off and Landing AircraftMesrobian, Chris Eden (Virginia Tech, 2009-06-12)The purpose of the study was to evaluate the merits of the DiscRotor concept that combine the features of a retractable rotor system for vertical take-off and landing (VTOL) with an integral, circular wing for high-speed flight. Tests were conducted to generate basic aerodynamic characteristics of the DiscRotor in hover and in fixed-wing flight. To assess the DiscRotor during hover, small scale tests were conducted on a 3ft diameter rotor without the presence of a fuselage. A "hover rig" was constructed capable of rotating the model rotor at speeds up to 3,500 RPM to reach tip speeds of 500fps. Thrust and torque generated by the rotating model were measured via a two-component load cell, and time averaged values were obtained for various speeds and pitch angles. It has been shown that the DiscRotor will perform well in hover. Ground Effects in hover were examined by simulating the ground with a movable, solid wall. The thrust was found to increase by 50% compared to the ground-independent case. Pressure distributions were measured on the ground and disc surfaces. Velocity measurements examined the flow field downstream of the rotor by traversing a seven hole velocity probe. A wake behind the rotor was shown to contract due to a low pressure region that develops downstream of the disc. Wind tunnel experimentation was also performed to examine the fixed wing flight of the DiscRotor. These experiments were performed in the VA Tech 6â X6â Stability Tunnel. A model of the fuselage and a circular wing was fabricated based upon an initial sizing study completed by our partners at Boeing. Forces were directly measured via a six degree of freedom load cell, or balance, for free stream velocities up to 200fps. Reynolds numbers of 2 and 0.5 million have been investigated for multiple angles of attack. Low lift-to-drag ratios were found placing high power requirements for the DiscRotor during fixed-wing flight. By traversing a seven-hole velocity probe, velocities in a 2-D grid perpendicular to the flow were measured on the model. The strengths of shed vortices from the model were calculated. A method to improve fixed-wing performance was considered where two blades were extended from the disc. An increase of 0.17 in the CL was measured due to the interaction between the disc and blades. This research utilized a wide range of experiments, with the aim of generating basic aerodynamic characteristics of the DiscRotor. A substantial amount of quantitative data was collected that could not be included in this document. Results aided in the initial designs of this aircraft for the purpose of evaluating the merit of the DiscRotor concept.
- Crossflow stability and transition experiments in a swept-wing flowDagenhart, J. Ray (Virginia Tech, 1992-12-03)An experimental examination of crossflow instability and transition on a 45° swept wing is conducted in the Arizona State University Unsteady Wind Tunnel. The stationary-vortex pattern and transition location are visualized using both sublimating-chemical and liquid-crystal coatings. Extensive hot-wire measurements are conducted at several measurement stations across a single vortex track. The mean and travelling-wave disturbances are measured simultaneously. Stationary-crossflow disturbance profiles are determined by subtracting either a reference or a span-averaged velocity profile from the mean-velocity data. Mean, Stationary-crossflow, and travelling-wave velocity data are presented as local boundary-layer profiles and as contour plots across a single stationary-crossflow vortex track. Disturbance-mode profiles and growth rates are determined. The experimental data are compared to predictions from linear stability theory. Comparison of measured and predicted pressure distributions shows that a good approximation of infinite swept-wing flow is achieved. A fixed-wavelength vortex pattern is observed throughout the visualization range. The theoretically-predicted maximum-amplified vortex wavelength is found to be approximately 25% larger than the observed wavelength. Linear-stability computations for the dominant stationary-crossflow vortices show that the N-factors at transition ranged from 6.4 to 6.8. The mean-velocity profiles vary slightly across the stationary-crossflow vortex at the first measurement station. The variation across the vortex increases with downstream distance until nearly all of the profiles become highly-distorted S-shaped curves. Local stationary-crossflow disturbance profiles having either purely excess or deficit values develop at the upstream measurement stations. Further downstream the profiles take on crossover shapes not anticipated by the linear theory. The maximum streamwise stationary-crossflow velocity disturbances reach +20% of the edge velocity just before transition. The travelling-wave disturbances have single lobes at the upstream measurement stations as expected, but further downstream double-lobed travelling-wave profiles develop. The maximum disturbance intensity remains quite low until just ahead of the transition location where it suddenly peaks at 0.7% of the edge velocity and then drops sharply. The travelling-wave intensity is always more than an order of magnitude lower than the stationary crossflow-vortex strength. The mean streamwise-velocity contours are nearly flat and parallel to the model surface at the first measurement station. Further downstream, the contours rise up and begin to roll over like a wave breaking on the beach. The stationary-crossflow contours show that a plume of low-velocity fluid rises near the center of the wavelength while high-velocity regions develop near the surface at each end of the wavelength. There is no distinct pattern to the low-intensity travelling-wave contours until a short distance upstream of the transition location where the travelling-wave intensity suddenly peaks near the center of the vortex and then falls abruptly. The experimental disturbance-mode profiles agree quite well with the predicted eigenfunctions for the forward measurement stations. At the later stations, the experimental mode profiles assume double-lobed shapes with maxima above and below the single maximum predicted by the linear theory. The experimental growth rates are found to be less than or equal to the predicted growth rates from the linear theory. Also, the experimental growth rate curve oscillates over the measurement range whereas the theoretically-predicted growth rates decrease monotonically.
- Design and Implementation of a Pressure-Equalizing Vent System for Low-Slope RoofsGrant, Elizabeth J. (Virginia Tech, 2003-08-21)Winds create forces on buildings, sometimes with disastrous results. Low-slope roofs are subjected to potentially high levels of suction pressure, especially when winds strike the corner of a building, creating vortices. Traditional methods of attaching roof membranes to substrates are prone to failure when the low pressure on the roof surface instigates a transfer of forces to the roof membrane. Existing pressure-equalized roof systems use the power of the wind to transmit low pressure to the space immediately beneath the roof membrane, pulling the membrane down to the roof surface. The object of this study is the design of a wind vent which, when coupled with a single-ply roof membrane in a complete roof assembly, will successfully equalize low pressure throughout the entire field of the roof. The proposed wind vent differs from existing equalizer valves in its use of the Bernoulli effect to create low pressure. Optimized for ease of manufacturing and installation, the vent is omni-directional and contains no moving parts. After the wind vent prototype is developed, future study will be required to determine the tributary area of each vent, the interaction with the insulation beneath the membrane, the response time of the system when subjected to dynamic wind loading, the effect on the vent of various weather conditions, and the permissible amount of infiltration into the roof system. Associated research will also investigate the benefits of incorporating the heat evacuating capacity of the pressure-equalizing roof vent system into a roof membrane containing an amorphous photovoltaic array.
- Design Tool for a Ground-Coupled Ventilation SystemAlfadil, Mohammad Omar (Virginia Tech, 2019-04-26)Ground-coupled ventilation (GCV) is a system that exchanges heat with the soil. Because ground temperatures are relatively higher during the cold season and lower during the hot season, the system takes advantage of this natural phenomenon. This research focused on designing a ground-coupled ventilation system evaluation tool of many factors that affect system performance. The tool predicts the performance of GCV system design based on the GCV system design parameters including the location of the system, pipe length, pipe depth, pipe diameter, soil type, number of pipes, volume flow rate, and bypass system. The tool uses regression equations created from many GCV system design simulation data using Autodesk Computational Fluid Dynamics software. As a result, this tool helps users choose the most suitable GCV system design by comparing multiple GCV systems' design performances and allows them to save time, money, and effort.
- The Development and Control of Axial Vortices over Swept WingsKlute, Sandra M. (Virginia Tech, 1999-08-02)The natural unsteadiness in the post-breakdown flowfield of a 75° sweep delta wing at 40° angle of attack was studied with dual and single point hot-wire anemometry in the Engineering Science and Mechanics (ESM) Wind Tunnel at a Reynolds number Re = 210,000. Data were taken in five crossflow planes surrounding the wing's trailing edge. Results showed a dominant narrowband Strouhal frequency of St = 1.5 covering approximately 80% of the area with lower-intensity broadband secondary frequencies over 15% of that region. Cross-correlations between a fixed and traversing wire were calculated and phase and coherences mapped to determine the convection speed and trajectory of the helical mode instability. High-speed Particle Image Velocimetry (PIV) was conducted over a 75° sweep delta wing at 40° angle of attack in the ESM Water Tunnel II at Re = 45,000. Data were taken along the axis of the vortex in the breakdown flowfield at a speed of 0.1% of the convective time scale of the flow. Animations of instantaneous streamlines and velocity vectors revealed the impression of a helically spiralling vortex core on the measurement plane. Spectral analysis of the PIV data showed reduced frequencies which confirmed those found with the single-point measurements made in the ESM Wind Tunnel. The effect of four novel control surfaces on the breakdown flowfield of the delta wing was studied with surface pressure measurements along the axis of the vortex in the ESM Wind Tunnel. The apex flap was found effective and delayed vortex breakdown by 8° for a fixed wing. The flowfield was characterized over the delta wing executing a pitch-up maneuver at a reduced frequency of 0.06. Surface pressure measurements were taken in the ESM Wind Tunnel and Laser Doppler Velocimetry (LDV) was employed in the ESM Water Tunnel I as both the unmodified wing and then the wing with an apex flap deployed at an optimal angle b = 15° executed the pitch-up. Both sets of data confirmed the hysteresis of the flowfield. The LDV data, taken in two crossflow planes throughout the maneuver, showed an asymmetric breakdown development. As a practical extension of the study of the breakdown wake flowfield, hot-wire measurements were made over an F/A-18 model to determine the spectral characteristics of the flowfield. Three-dimensional vortex interactions were investigated with helium bubble flow visualization in the VPI Stability Tunnel.
- Development of a Flotation Rate Equation from First Principles under Turbulent Flow ConditionsSherrell, Ian M. (Virginia Tech, 2004-07-30)A flotation model has been proposed that is applicable in a turbulent environment. It is the first turbulent model that takes into account hydrodynamics of the flotation cell as well as all relevant surface forces (van der Waals, electrostatic, and hydrophobic) by use of the Extended DLVO theory. The model includes probabilities for attachment, detachment, and froth recovery as well as a collision frequency. A review of the effects fluids have on the flotation process has also been given. This includes collision frequencies, attachment and detachment energies, and how the energies of the turbulent system relate to them. Flotation experiments have been conducted to verify this model. Model predictions were comparable to experimental results with similar trends. Simulations were also run that show trends and values seen in industrial flotation systems. These simulations show the many uses of the model and how it can benefit the industries that use flotation.
- Development of a Virtual Scientific Visualization Environment for the Analysis of Complex FlowsEtebari, Ali (Virginia Tech, 2002-11-15)This project offers a multidisciplinary approach towards the acquisition, analysis and visualization of experimental data that pertain to cardiovascular applications. First and foremost, the capabilities of our Time-Resolved Digital Particle Image Velocimetry (TRDPIV) system were improved, allowing near-wall wall TRDPIV on compliant, dynamically moving boundaries. As a result, false flow-field vectors due to reflections from the boundary walls were eliminated, and allowing measurement of wall shear stress, wall shear rate, and oscillating shear index within as little as fifty microns of the boundary. Similar in-vitro measurements have not been reported to date by any other group. Second, an immersive, virtual environment (VE) was developed for the investigation and analysis of vortical, spatio-temporally developing flows with complex fluid-structure interactions. This VE was used to study flows in the cardiovascular system, particularly for flow through mechanical heart valves and inside the heart left ventricle (LV). The simulation provides three-dimensional (3-D) visualization of in-vitro heart flow mechanics, allowing global, volumetric flow analysis, and a useful environment for comparison with in-vivo MRI velocimetry data. 3-D glyphs (symbols representing informational parameters) are used to visually represent the flow parameters in the form of an ellipse attached to a cone, where the ellipse represents a second-order Reynolds stress tensor, and the cone represents the velocity magnitude and direction at a particular point in space, and the color corresponds to an out-of-plane vorticity. This new system has a major advantage over conventional 2-D systems in that it successfully doubles the number of visualized parameters, and allows for visualization of a time-dependent series of flow data in the Virginia Tech CAVETM immersive VE. The user controls his/her viewpoint, and can thus navigate through the simulation and view the flow field from any perspective in the immersive VE. Finally, an edge detection algorithm was developed to determine the inner and outer myocardial boundaries, and from this information calculate the local thickness distribution of the myocardium and a myocardial area approximation. This information is important in validating our in-vitro system, and is integral to the evaluation and diagnosis of congestive heart disease and its progression.