Browsing by Author "Testerman, James C."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Nlrp12 deficiency alters gut microbiota and ameliorates Fas(lpr)-mediated systemic autoimmunity in male miceAbdelhamid, Leila; Mao, Jiangdi; Cabana-Puig, Xavier; Zhu, Jing; Swartwout, Brianna K.; Edwards, Michael R.; Testerman, James C.; Michaelis, Jacquelyn S.; Allen, Irving Coy; Ahmed, S. Ansar; Luo, Xin M. (Frontiers, 2023-03)NLRP12 has dual roles in shaping inflammation. We hypothesized that NLRP12 would modulate myeloid cells and T cell function to control systemic autoimmunity. Contrary to our hypothesis, the deficiency of Nlrp12 in autoimmune-prone B6.Fas(lpr/lpr) mice ameliorated autoimmunity in males but not females. Nlrp12 deficiency dampened B cell terminal differentiation, germinal center reaction, and survival of autoreactive B cells leading to decreased production of autoantibodies and reduced renal deposition of IgG and complement C3. In parallel, Nlrp12 deficiency reduced the expansion of potentially pathogenic T cells, including double-negative T cells and T follicular helper cells. Furthermore, reduced pro-inflammatory innate immunity was observed, where the gene deletion decreased in-vivo expansion of splenic macrophages and mitigated ex-vivo responses of bone marrow-derived macrophages and dendritic cells to LPS stimulation. Interestingly, Nlrp12 deficiency altered the diversity and composition of fecal microbiota in both male and female B6/lpr mice. Notably, however, Nlrp12 deficiency significantly modulated small intestinal microbiota only in male mice, suggesting that the sex differences in disease phenotype might be gut microbiota-dependent. Together, these results suggest a potential pathogenic role of NLRP12 in promoting systemic autoimmunity in males. Future studies will investigate sex-based mechanisms through which NLRP12 differentially modulates autoimmune outcomes.
- TCDD and CH223191 alter T cell balance but fail to induce anti-inflammatory response in adult lupus miceGutierrez, Fernando; Murphy, Quiyana M.; Swartwout, Brianna K.; Read, Kaitlin A.; Edwards, Michael R.; Abdelhamid, Leila; Cabana-Puig, Xavier; Testerman, James C.; Xu, Tian; Lu, Ran; Amin, Pavly; Cecere, Thomas E.; Reilly, Christopher M.; Oestreich, Kenneth J.; Ciupe, Stanca M.; Luo, Xin M. (The American Association of Immunologists, 2024-02-14)Aryl hydrocarbon receptor (AhR) responds to endogenous and exogenous ligands as a cytosolic receptor, transcription factor, and E3 ubiquitin ligase. Several studies support an anti-inflammatory effect of AhR activation. However, exposure to the AhR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during early stages of development results in an autoimmune phenotype and exacerbates lupus. The effects of TCDD on lupus in adults with pre-existing autoimmunity have not been described. We present novel evidence that AhR stimulation by TCDD alters T cell responses but fails to impact lupus-like disease using an adult mouse model. Interestingly, AhR antagonist CH223191 also changed T cell balance in our model. We next developed a conceptual framework for identifying cellular and molecular factors that contribute to physiological outcomes in lupus and created models that describe cytokine dynamics that were fed into a system of differential equations to predict the kinetics of T follicular helper (Tfh) and regulatory T (Treg) cell populations. The model predicted that Tfh cells expanded to larger values following TCDD exposure compared with vehicle and CH223191. Following the initial elevation, both Tfh and Treg cell populations continuously decayed over time. A function based on the ratio of predicted Treg/Tfh cells showed that Treg cells exceed Tfh cells in all groups, with TCDD and CH223191 showing lower Treg/Tfh cell ratios than the vehicle and that the ratio is relatively constant over time. We conclude that AhR ligands did not induce an anti-inflammatory response to attenuate autoimmunity in adult lupus mice. This study challenges the dogma that TCDD supports an immunosuppressive phenotype.