Browsing by Author "Thomas, Evan Grier"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Dynamics of the geomagnetically disturbed ionosphere as measured by GPS receivers and SuperDARN HF radarsThomas, Evan Grier (Virginia Tech, 2012-12-07)Total electron content (TEC) data measured from ground-based GPS receivers is compared to HF backscatter from ionospheric irregularities obtained by Super Dual Auroral Radar Network (SuperDARN) radars. We present the first observations of a recurrent region of anomalous enhanced TEC at mid-latitudes over North America and attempt to characterize its frequency of occurrence. Next, we examine the relationship of convection electric fields to the formation of a polar cap tongue of ionization (TOI) from mid-latitude plumes of storm enhanced density (SED) during a geomagnetic storm on 26 September 2011. A channel of high density F region plasma was transported from the dayside ionosphere and into the polar cap by enhanced convection electric fields extending to mid-latitudes. After the solar wind IMF conditions quieted and the dayside convection electric fields retreated to higher latitudes, an SED was observed extending to, but not entering, the dayside cusp region. The source mechanism (enhanced electric fields) previously drawing the plasma from mid-latitudes and into the polar cap was no longer active, resulting in a fossil feature which persisted for several hours as it elongated in magnetic local time. Finally, we discuss ground surface effects on the HF backscatter observed by four SuperDARN radars. Monthly ground scatter occurrence rates are calculated for comparison with Arctic sea ice boundaries derived from satellite observations, showing reduced backscatter from regions covered by ice.
- Morphology and dynamics of storm-time ionospheric density structuresThomas, Evan Grier (Virginia Tech, 2016-03-04)Accurate knowledge of the electron density structure of the Earth's upper atmosphere is crucial to forecasting the performance of transionospheric radio signals. For this research, we focus on storm-time structuring in the mid- to high latitude ionosphere where large gradients in electron density can cause severe degradation of communication and navigation signals. We begin in Chapter 2 with a review of the primary data sets and methods used to accomplish the collaborative, multi-instrument studies described in this dissertation. In Chapter 3, we compare observational techniques for tracking polar cap patches during a moderate geomagnetic storm interval. For the first time, we monitor the transportation of patches with high spatial and temporal resolution across the polar cap for 1--2~h using a combination of GPS TEC, all-sky airglow imagers (ASIs), and Super Dual Auroral Radar Network (SuperDARN) HF radar backscatter. Simultaneous measurements from these data sets allow for continuous tracking of patch location, horizontal extent, and velocity even under adverse observational conditions for one or more of the techniques. A focus is placed on the structuring of patches, particularly on the nightside ionosphere as they become wider in the dawn-dusk direction and develop narrow finger-like structures. In Chapter 4, we perform a superposed epoch analysis to characterize the average response of GPS TEC in the North American sector during more than 100 geomagnetic storms over a 13-year interval. For the first time a rigorous approach is used to fully separate storm-time, local time, longitudinal, and seasonal effects at midlatitudes where dense ground receiver coverage is available. The rapid onset of a positive phase is observed across much of the dayside and evening ionosphere followed by a longer-lasting negative phase across all latitudes and local times. Our results show clear seasonal variations in the storm-time TEC, such that summer events tend to be dominated by the negative storm response while winter events exhibit a stronger initial positive phase with minimal negative storm effects. A prominent magnetic declination effect is identified and examined in terms of thermospheric zonal winds pushing plasma upward/downward along magnetic field lines of opposite declination. Finally in Chapter 5 we summarize several co-authored studies which examined various storm-time phenomena utilizing GPS TEC mapping tools developed for this dissertation research, with topics including subauroral polarization stream (SAPS), storm enhanced density (SED), tongue of ionization (TOI), and polar cap patches.
- Review of the accomplishments of mid-latitude Super Dual Auroral Radar Network (SuperDARN) HF radarsNishitani, Nozomu; Ruohoniemi, J. Michael; Lester, Mark; Baker, Joseph B. H.; Koustov, Alexandre V.; Shepherd, Simon G.; Chisham, Gareth; Hori, Tomoaki; Thomas, Evan Grier; Makarevich, Roman A.; Marchaudon, Aurélie; Ponomarenko, Pavlo V.; Wild, James A.; Milan, Stephen E.; Bristow, William A.; Devlin, John; Miller, Ethan; Greenwald, Raymond A.; Ogawa, Tadahiko; Kikuchi, Takashi (2019-03-18)The Super Dual Auroral Radar Network (SuperDARN) is a network of high-frequency (HF) radars located in the high- and mid-latitude regions of both hemispheres that is operated under international cooperation. The network was originally designed for monitoring the dynamics of the ionosphere and upper atmosphere in the high-latitude regions. However, over the last approximately 15 years, SuperDARN has expanded into the mid-latitude regions. With radar coverage that now extends continuously from auroral to sub-auroral and mid-latitudes, a wide variety of new scientific findings have been obtained. In this paper, the background of mid-latitude SuperDARN is presented at first. Then, the accomplishments made with mid-latitude SuperDARN radars are reviewed in five specified scientific and technical areas: convection, ionospheric irregularities, HF propagation analysis, ion-neutral interactions, and magnetohydrodynamic (MHD) waves. Finally, the present status of mid-latitude SuperDARN is updated and directions for future research are discussed.