Browsing by Author "Thomas, Summer"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Estimation of Bale Grazing and Sacrificed Pasture Biomass through the Integration of Sentinel Satellite Images and Machine Learning TechniquesVahidi, Milad; Shafian, Sanaz; Thomas, Summer; Maguire, Rory O. (MDPI, 2023-10-18)Quantifying the forage biomass in pastoral systems can be used for enhancing farmers’ decision-making in precision management and optimizing livestock feeding systems. In this study, we assessed the feasibility of integrating Sentinel-1 and Sentinel-2 satellite imagery with machine learning techniques to estimate the aboveground biomass and forage quality of bale grazing and sacrificed grassland areas in Virginia. The workflow comprised two steps, each addressing specific objectives. Firstly, we analyzed the temporal variation in spectral and synthetic aperture radar (SAR) variables derived from Sentinel-1 and Sentinel-2 time series images. Subsequently, we evaluated the contribution of these variables with the estimation of grassland biomass using three machine learning algorithms, as follows: support vector regression (SVR), random forest (RF), and artificial neural network (ANN). The quantitative assessment of the models demonstrates that the ANN algorithm outperforms the other approaches when estimating pasture biomass. The developed ANN model achieved an R2 of 0.83 and RMSE of 6.68 kg/100 sq. meter. The evaluation of feature importance revealed that VV and VH polarizations play a significant role in the model, indicating the SAR sensor’s ability to perceive changes in plant structure during the growth period. Additionally, the blue, green, and NIR bands were identified as the most influential spectral variables in the model, underscoring the alterations in the spectrum of the pasture over time.
- Pasture Biomass Estimation Using Ultra-High-Resolution RGB UAVs Images and Deep LearningVahidi, Milad; Shafian, Sanaz; Thomas, Summer; Maguire, Rory O. (MDPI, 2023-12-13)The continuous assessment of grassland biomass during the growth season plays a vital role in making informed, location-specific management choices. The implementation of precision agriculture techniques can facilitate and enhance these decision-making processes. Nonetheless, precision agriculture depends on the availability of prompt and precise data pertaining to plant characteristics, necessitating both high spatial and temporal resolutions. Utilizing structural and spectral attributes extracted from low-cost sensors on unmanned aerial vehicles (UAVs) presents a promising non-invasive method to evaluate plant traits, including above-ground biomass and plant height. Therefore, the main objective was to develop an artificial neural network capable of estimating pasture biomass by using UAV RGB images and the canopy height models (CHM) during the growing season over three common types of paddocks: Rest, bale grazing, and sacrifice. Subsequently, this study first explored the variation of structural and color-related features derived from statistics of CHM and RGB image values under different levels of plant growth. Then, an ANN model was trained for accurate biomass volume estimation based on a rigorous assessment employing statistical criteria and ground observations. The model demonstrated a high level of precision, yielding a coefficient of determination (R2) of 0.94 and a root mean square error (RMSE) of 62 (g/m2). The evaluation underscores the critical role of ultra-high-resolution photogrammetric CHMs and red, green, and blue (RGB) values in capturing meaningful variations and enhancing the model’s accuracy across diverse paddock types, including bale grazing, rest, and sacrifice paddocks. Furthermore, the model’s sensitivity to areas with minimal or virtually absent biomass during the plant growth period is visually demonstrated in the generated maps. Notably, it effectively discerned low-biomass regions in bale grazing paddocks and areas with reduced biomass impact in sacrifice paddocks compared to other types. These findings highlight the model’s versatility in estimating biomass across a range of scenarios, making it well suited for deployment across various paddock types and environmental conditions.