Browsing by Author "Thompson, Adrian"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Axionlike Particles at Future Neutrino Experiments: Closing the Cosmological TriangleBrdar, Vedran; Dutta, Bhaskar; Jang, Wooyoung; Kim, Doojin; Shoemaker, Ian M.; Tabrizi, Zahra; Thompson, Adrian; Yu, Jaehoon (2021-05-17)Axionlike particles (ALPs) provide a promising direction in the search for new physics, while a wide range of models incorporate ALPs. We point out that future neutrino experiments, such as DUNE, possess competitive sensitivity to ALP signals. The high-intensity proton beam impinging on a target can not only produce copious amounts of neutrinos, but also cascade photons that are created from charged particle showers stopping in the target. Therefore, ALPs interacting with photons can be produced (often energetically) with high intensity via the Primakoff effect and then leave their signatures at the near detector through the inverse Primakoff scattering or decays to a photon pair. Moreover, the high-capability near detectors allow for discrimination between ALP signals and potential backgrounds, improving the signal sensitivity further. We demonstrate that a DUNE-like detector can explore a wide range of parameter space in ALP-photon coupling g(a gamma) vs ALP mass m(a), including some regions unconstrained by existing bounds; the "cosmological triangle" will be fully explored and the sensitivity limits would reach up to m(a) similar to 3-4 GeV and down to g(a gamma) similar to 10(-8) GeV-1.
- Extending the reach of leptophilic boson searches at DUNE and MiniBooNE with bremsstrahlung and resonant productionCapozzi, Francesco; Dutta, Bhaskar; Gurung, Gajendra; Jang, Wooyoung; Shoemaker, Ian M.; Thompson, Adrian; Yu, Jaehoon (American Physical Society, 2021-12-10)New gauge bosons coupling to leptons are simple and well-motivated extensions of the Standard Model. We study the sensitivity to gauged L-mu- L-e, L-e - L-tau and L-mu- L-tau both with the existing beam dump mode data of MiniBooNE and with the DUNE near detector. We find that including bremsstrahlung and resonant production of Z' which decays to e(+/-) and mu(+/-) final states leads to a significant improvement in existing bounds, especially for L-mu- L-e and L-e - L-tau for DUNE while competitive constraints can be achieved with the existing data from the MiniBooNE's beam dump run.
- Probing new physics at DUNE operating in a beam-dump modeBrdar, Vedran; Dutta, Bhaskar; Jang, Wooyoung; Kim, Doojin; Shoemaker, Ian M.; Tabrizi, Zahra; Thompson, Adrian; Yu, Jaehoon (American Physical Society, 2023-03)In this work we demonstrate that a future accelerator-based neutrino experiment such as DUNE can greatly increase its sensitivity to a variety of new physics scenarios by operating in a mode where the proton beam impinges on a beam dump. We consider two new physics scenarios, namely light dark matter and axionlike particles and show that by utilizing a dump mode at a DUNE-like experiment, unexplored new regions of parameter space can be probed with an exposure of only 3 months with half of its expected initial beam power. Specifically, targetless configuration of future high intensity neutrino experiments will probe the parameter space for thermal relic dark matter as well as the QCD axion. The strength of such a configuration in the context of new physics searches stems from the fact that the neutrino flux is significantly reduced compared to that of the target, resulting in much smaller backgrounds from neutrino interactions. We have verified this in detail by explicitly computing neutrino fluxes which we make publicly available in order to facilitate further studies with a targetless configuration.