Browsing by Author "Tian, Ye"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- High-fat or ethinyl-oestradiol intake during pregnancy increases mammary cancer risk in several generations of offspringde Assis, Sonia; Wärri, Anni; Cruz, M. Idalia; Laja, Olusola; Tian, Ye; Zhang, Bai; Wang, Yue; Huang, Tim H. M.; Hilakivi-Clarke, Leena (Nature Publishing Group, 2012-01-01)Environmental factors can influence one's susceptibility to cancer, but it is not clear whether such an influence extends beyond the directly exposed generations. Here, feeding pregnant rats with a high-fat diet or a hormone derivative, the authors observe increased breast cancer risk in up to three subsequent generations.
- Knowledge-fused differential dependency network models for detecting significant rewiring in biological networksTian, Ye; Zhang, Bai; Hoffman, Eric P.; Clarke, Robert; Zhang, Zhen; Shih, Ie-Ming; Xuan, Jianhua; Herrington, David M.; Wang, Yue (2014-07-24)Modeling biological networks serves as both a major goal and an effective tool of systems biology in studying mechanisms that orchestrate the activities of gene products in cells. Biological networks are context-specific and dynamic in nature. To systematically characterize the selectively activated regulatory components and mechanisms, modeling tools must be able to effectively distinguish significant rewiring from random background fluctuations. While differential networks cannot be constructed by existing knowledge alone, novel incorporation of prior knowledge into data-driven approaches can improve the robustness and biological relevance of network inference. However, the major unresolved roadblocks include: big solution space but a small sample size; highly complex networks; imperfect prior knowled≥ missing significance assessment; and heuristic structural parameter learning. To address these challenges, we formulated the inference of differential dependency networks that incorporate both conditional data and prior knowledge as a convex optimization problem, and developed an efficient learning algorithm to jointly infer the conserved biological network and the significant rewiring across different conditions. We used a novel sampling scheme to estimate the expected error rate due to "random" knowledge. Based on that scheme, we developed a strategy that fully exploits the benefit of this data-knowledge integrated approach. We demonstrated and validated the principle and performance of our method using synthetic datasets. We then applied our method to yeast cell line and breast cancer microarray data and obtained biologically plausible results. The open-source R software package and the experimental data are freely available at http://www.cbil.ece.vt.edu/software.htm. Experiments on both synthetic and real data demonstrate the effectiveness of the knowledge-fused differential dependency network in revealing the statistically significant rewiring in biological networks. The method efficiently leverages data-driven evidence and existing biological knowledge while remaining robust to the false positive edges in the prior knowledge. The identified network rewiring events are supported by previous studies in the literature and also provide new mechanistic insight into the biological systems. We expect the knowledge-fused differential dependency network analysis, together with the open-source R package, to be an important and useful bioinformatics tool in biological network analyses.
- Knowledge-fused Identification of Condition-specific Rewiring of Dependencies in Biological NetworksTian, Ye (Virginia Tech, 2014-09-30)Gene network modeling is one of the major goals of systems biology research. Gene network modeling targets the middle layer of active biological systems that orchestrate the activities of genes and proteins. Gene network modeling can provide critical information to bridge the gap between causes and effects which is essential to explain the mechanisms underlying disease. Among the network construction tasks, the rewiring of relevant network structure plays critical roles in determining the behavior of diseases. To systematically characterize the selectively activated regulatory components and mechanisms, the modeling tools must be able to effectively distinguish significant rewiring from random background fluctuations. While differential dependency networks cannot be constructed by existing knowledge alone, effective incorporation of prior knowledge into data-driven approaches can improve the robustness and biological relevance of network inference. Existing studies on protein-protein interactions and biological pathways provide constantly accumulated rich domain knowledge. Though novel incorporation of biological prior knowledge into network learning algorithms can effectively leverage domain knowledge, biological prior knowledge is neither condition-specific nor error-free, only serving as an aggregated source of partially-validated evidence under diverse experimental conditions. Hence, direct incorporation of imperfect and non-specific prior knowledge in specific problems is prone to errors and theoretically problematic. To address this challenge, we propose a novel mathematical formulation that enables incorporation of prior knowledge into structural learning of biological networks as Gaussian graphical models, utilizing the strengths of both measurement data and prior knowledge. We propose a novel strategy to estimate and control the impact of unavoidable false positives in the prior knowledge that fully exploits the evidence from data while obtains "second opinion" by efficient consultations with prior knowledge. By proposing a significance assessment scheme to detect statistically significant rewiring of the learned differential dependency network, our method can assign edge-specific p-values and specify edge types to indicate one of six biological scenarios. The data-knowledge jointly inferred gene networks are relatively simple to interpret, yet still convey considerable biological information. Experiments on extensive simulation data and comparison with peer methods demonstrate the effectiveness of knowledge-fused differential dependency network in revealing the statistically significant rewiring in biological networks, leveraging data-driven evidence and existing biological knowledge, while remaining robust to the false positive edges in the prior knowledge. We also made significant efforts in disseminating the developed method tools to the research community. We developed an accompanying R package and Cytoscape plugin to provide both batch processing ability and user-friendly graphic interfaces. With the comprehensive software tools, we apply our method to several practically important biological problems to study how yeast response to stress, to find the origin of ovarian cancer, and to evaluate the drug treatment effectiveness and other broader biological questions. In the yeast stress response study our findings corroborated existing literatures. A network distance measurement is defined based on KDDN and provided novel hypothesis on the origin of high-grade serous ovarian cancer. KDDN is also used in a novel integrated study of network biology and imaging in evaluating drug treatment of brain tumor. Applications to many other problems also received promising biological results.