Browsing by Author "Tran, Hong T."
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- Assessment of drought tolerance of 49 switchgrass (Panicum virgatum) genotypes using physiological and morphological parametersLiu, Yiming; Zhang, Xunzhong; Tran, Hong T.; Shan, Liang; Kim, Jeongwoon; Childs, Kevin L.; Ervin, Erik H.; Frazier, Taylor P.; Zhao, Bingyu Y. (2015-09-22)Background Switchgrass (Panicum virgatum L.) is a warm-season C4 grass that is a target lignocellulosic biofuel species. In many regions, drought stress is one of the major limiting factors for switchgrass growth. The objective of this study was to evaluate the drought tolerance of 49 switchgrass genotypes. The relative drought stress tolerance was determined based on a set of parameters including plant height, leaf length, leaf width, leaf sheath length, leaf relative water content (RWC), electrolyte leakage (EL), photosynthetic rate (Pn), stomatal conductance (g s), transpiration rate (Tr), intercellular CO2 concentration (Ci), and water use efficiency (WUE). Results SRAP marker analysis determined that the selected 49 switchgrass genotypes represent a diverse genetic pool of switchgrass germplasm. Principal component analysis (PCA) and drought stress indexes (DSI) of each physiological parameter showed significant differences in the drought stress tolerance among the 49 genotypes. Heatmap and PCA data revealed that physiological parameters are more sensitive than morphological parameters in distinguishing the control and drought treatments. Metabolite profiling data found that under drought stress, the five best drought-tolerant genotypes tended to have higher levels of abscisic acid (ABA), spermine, trehalose, and fructose in comparison to the five most drought-sensitive genotypes. Conclusion Based on PCA ranking value, the genotypes TEM-SEC, TEM-LoDorm, BN-13645-64, Alamo, BN-10860-61, BN-12323-69, TEM-SLC, T-2086, T-2100, T-2101, Caddo, and Blackwell-1 had relatively higher ranking values, indicating that they are more tolerant to drought. In contrast, the genotypes Grif Nebraska 28, Grenville-2, Central Iowa Germplasm, Cave-in-Rock, Dacotah, and Nebraska 28 were found to be relatively sensitive to drought stress. By analyzing physiological response parameters and different metabolic profiles, the methods utilized in this study identified drought-tolerant and drought-sensitive switchgrass genotypes. These results provide a foundation for future research directed at understanding the molecular mechanisms underlying switchgrass tolerance to drought.
- Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screenMenden, Michael P.; Wang, Dennis; Mason, Mike J.; Szalai, Bence; Bulusu, Krishna C.; Guan, Yuanfang; Yu, Thomas; Kang, Jaewoo; Jeon, Minji; Wolfinger, Russ; Nguyen, Tin; Zaslavskiy, Mikhail; Jang, In Sock; Ghazoui, Zara; Ahsen, Mehmet Eren; Vogel, Robert; Neto, Elias Chaibub; Norman, Thea; Tang, Eric K. Y.; Garnett, Mathew J.; Di Veroli, Giovanni Y.; Fawell, Stephen; Stolovitzky, Gustavo; Guinney, Justin; Dry, Jonathan R.; Saez-Rodriguez, Julio; Abante, Jordi; Abecassis, Barbara Schmitz; Aben, Nanne; Aghamirzaie, Delasa; Aittokallio, Tero; Akhtari, Farida S.; Al-lazikani, Bissan; Alam, Tanvir; Allam, Amin; Allen, Chad; de Almeida, Mariana Pelicano; Altarawy, Doaa; Alves, Vinicius; Amadoz, Alicia; Anchang, Benedict; Antolin, Albert A.; Ash, Jeremy R.; Romeo Aznar, Victoria; Ba-alawi, Wail; Bagheri, Moeen; Bajic, Vladimir; Ball, Gordon; Ballester, Pedro J.; Baptista, Delora; Bare, Christopher; Bateson, Mathilde; Bender, Andreas; Bertrand, Denis; Wijayawardena, Bhagya; Boroevich, Keith A.; Bosdriesz, Evert; Bougouffa, Salim; Bounova, Gergana; Brouwer, Thomas; Bryant, Barbara; Calaza, Manuel; Calderone, Alberto; Calza, Stefano; Capuzzi, Stephen; Carbonell-Caballero, Jose; Carlin, Daniel; Carter, Hannah; Castagnoli, Luisa; Celebi, Remzi; Cesareni, Gianni; Chang, Hyeokyoon; Chen, Guocai; Chen, Haoran; Chen, Huiyuan; Cheng, Lijun; Chernomoretz, Ariel; Chicco, Davide; Cho, Kwang-Hyun; Cho, Sunghwan; Choi, Daeseon; Choi, Jaejoon; Choi, Kwanghun; Choi, Minsoo; De Cock, Martine; Coker, Elizabeth; Cortes-Ciriano, Isidro; Cserzo, Miklos; Cubuk, Cankut; Curtis, Christina; Van Daele, Dries; Dang, Cuong C.; Dijkstra, Tjeerd; Dopazo, Joaquin; Draghici, Sorin; Drosou, Anastasios; Dumontier, Michel; Ehrhart, Friederike; Eid, Fatma-Elzahraa; ElHefnawi, Mahmoud; Elmarakeby, Haitham A.; van Engelen, Bo; Engin, Hatice Billur; de Esch, Iwan; Evelo, Chris; Falcao, Andre O.; Farag, Sherif; Fernandez-Lozano, Carlos; Fisch, Kathleen; Flobak, Asmund; Fornari, Chiara; Foroushani, Amir B. K.; Fotso, Donatien Chedom; Fourches, Denis; Friend, Stephen; Frigessi, Arnoldo; Gao, Feng; Gao, Xiaoting; Gerold, Jeffrey M.; Gestraud, Pierre; Ghosh, Samik; Gillberg, Jussi; Godoy-Lorite, Antonia; Godynyuk, Lizzy; Godzik, Adam; Goldenberg, Anna; Gomez-Cabrero, David; Gonen, Mehmet; de Graaf, Chris; Gray, Harry; Grechkin, Maxim; Guimera, Roger; Guney, Emre; Haibe-Kains, Benjamin; Han, Younghyun; Hase, Takeshi; He, Di; He, Liye; Heath, Lenwood S.; Hellton, Kristoffer H.; Helmer-Citterich, Manuela; Hidalgo, Marta R.; Hidru, Daniel; Hill, Steven M.; Hochreiter, Sepp; Hong, Seungpyo; Hovig, Eivind; Hsueh, Ya-Chih; Hu, Zhiyuan; Huang, Justin K.; Huang, R. Stephanie; Hunyady, Laszlo; Hwang, Jinseub; Hwang, Tae Hyun; Hwang, Woochang; Hwang, Yongdeuk; Isayev, Olexandr; Walk, Oliver Bear Don't; Jack, John; Jahandideh, Samad; Ji, Jiadong; Jo, Yousang; Kamola, Piotr J.; Kanev, Georgi K.; Karacosta, Loukia; Karimi, Mostafa; Kaski, Samuel; Kazanov, Marat; Khamis, Abdullah M.; Khan, Suleiman Ali; Kiani, Narsis A.; Kim, Allen; Kim, Jinhan; Kim, Juntae; Kim, Kiseong; Kim, Kyung; Kim, Sunkyu; Kim, Yongsoo; Kim, Yunseong; Kirk, Paul D. W.; Kitano, Hiroaki; Klambauer, Gunter; Knowles, David; Ko, Melissa; Kohn-Luque, Alvaro; Kooistra, Albert J.; Kuenemann, Melaine A.; Kuiper, Martin; Kurz, Christoph; Kwon, Mijin; van Laarhoven, Twan; Laegreid, Astrid; Lederer, Simone; Lee, Heewon; Lee, Jeon; Lee, Yun Woo; Leppaho, Eemeli; Lewis, Richard; Li, Jing; Li, Lang; Liley, James; Lim, Weng Khong; Lin, Chieh; Liu, Yiyi; Lopez, Yosvany; Low, Joshua; Lysenko, Artem; Machado, Daniel; Madhukar, Neel; De Maeyer, Dries; Malpartida, Ana Belen; Mamitsuka, Hiroshi; Marabita, Francesco; Marchal, Kathleen; Marttinen, Pekka; Mason, Daniel; Mazaheri, Alireza; Mehmood, Arfa; Mehreen, Ali; Michaut, Magali; Miller, Ryan A.; Mitsopoulos, Costas; Modos, Dezso; Van Moerbeke, Marijke; Moo, Keagan; Motsinger-Reif, Alison; Movva, Rajiv; Muraru, Sebastian; Muratov, Eugene; Mushthofa, Mushthofa; Nagarajan, Niranjan; Nakken, Sigve; Nath, Aritro; Neuvial, Pierre; Newton, Richard; Ning, Zheng; De Niz, Carlos; Oliva, Baldo; Olsen, Catharina; Palmeri, Antonio; Panesar, Bhawan; Papadopoulos, Stavros; Park, Jaesub; Park, Seonyeong; Park, Sungjoon; Pawitan, Yudi; Peluso, Daniele; Pendyala, Sriram; Peng, Jian; Perfetto, Livia; Pirro, Stefano; Plevritis, Sylvia; Politi, Regina; Poon, Hoifung; Porta, Eduard; Prellner, Isak; Preuer, Kristina; Angel Pujana, Miguel; Ramnarine, Ricardo; Reid, John E.; Reyal, Fabien; Richardson, Sylvia; Ricketts, Camir; Rieswijk, Linda; Rocha, Miguel; Rodriguez-Gonzalvez, Carmen; Roell, Kyle; Rotroff, Daniel; de Ruiter, Julian R.; Rukawa, Ploy; Sadacca, Benjamin; Safikhani, Zhaleh; Safitri, Fita; Sales-Pardo, Marta; Sauer, Sebastian; Schlichting, Moritz; Seoane, Jose A.; Serra, Jordi; Shang, Ming-Mei; Sharma, Alok; Sharma, Hari; Shen, Yang; Shiga, Motoki; Shin, Moonshik; Shkedy, Ziv; Shopsowitz, Kevin; Sinai, Sam; Skola, Dylan; Smirnov, Petr; Soerensen, Izel Fourie; Soerensen, Peter; Song, Je-Hoon; Song, Sang Ok; Soufan, Othman; Spitzmueller, Andreas; Steipe, Boris; Suphavilai, Chayaporn; Tamayo, Sergio Pulido; Tamborero, David; Tang, Jing; Tanoli, Zia-ur-Rehman; Tarres-Deulofeu, Marc; Tegner, Jesper; Thommesen, Liv; Tonekaboni, Seyed Ali Madani; Tran, Hong T.; De Troyer, Ewoud; Truong, Amy; Tsunoda, Tatsuhiko; Turu, Gabor; Tzeng, Guang-Yo; Verbeke, Lieven; Videla, Santiago; Vis, Daniel; Voronkov, Andrey; Votis, Konstantinos; Wang, Ashley; Wang, Hong-Qiang Horace; Wang, Po-Wei; Wang, Sheng; Wang, Wei; Wang, Xiaochen; Wang, Xin; Wennerberg, Krister; Wernisch, Lorenz; Wessels, Lodewyk; van Westen, Gerard J. P.; Westerman, Bart A.; White, Simon Richard; Willighagen, Egon; Wurdinger, Tom; Xie, Lei; Xie, Shuilian; Xu, Hua; Yadav, Bhagwan; Yau, Christopher; Yeerna, Huwate; Yin, Jia Wei; Yu, Michael; Yu, MinHwan; Yun, So Jeong; Zakharov, Alexey; Zamichos, Alexandros; Zanin, Massimiliano; Zeng, Li; Zenil, Hector; Zhang, Frederick; Zhang, Pengyue; Zhang, Wei; Zhao, Hongyu; Zhao, Lan; Zheng, Wenjin; Zoufir, Azedine; Zucknick, Manuela (Springer Nature, 2019-06-17)The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca's large drug combination dataset, consisting of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines, and results of a DREAM Challenge to evaluate computational strategies for predicting synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive methodological development and benchmarking. Winning methods incorporate prior knowledge of drug-target interactions. Synergy is predicted with an accuracy matching biological replicates for >60% of combinations. However, 20% of drug combinations are poorly predicted by all methods. Genomic rationale for synergy predictions are identified, including ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells.
- Herbicide injury induces DNA methylome alterations in ArabidopsisKim, Gunjune; Clarke, Christopher R.; Larose, Hailey; Tran, Hong T.; Haak, David C.; Zhang, Liqing; Askew, Shawn D.; Barney, Jacob; Westwood, James H. (2017-07)The emergence of herbicide-resistant weeds is a major threat facing modern agriculture. Over 470 weedy-plant populations have developed resistance to herbicides. Traditional evolutionary mechanisms are not always sufficient to explain the rapidity with which certain weed populations adapt in response to herbicide exposure. Stress-induced epigenetic changes, such as alterations in DNA methylation, are potential additional adaptive mechanisms for herbicide resistance. We performed methylC sequencing of Arabidopsis thaliana leaves that developed after either mock treatment or two different sub-lethal doses of the herbicide glyphosate, the most-used herbicide in the history of agriculture. The herbicide injury resulted in 9,205 differentially methylated regions (DMRs) across the genome. In total, 5,914 of these DMRs were induced in a dose-dependent manner, wherein the methylation levels were positively correlated to the severity of the herbicide injury, suggesting that plants can modulate the magnitude of methylation changes based on the severity of the stress. Of the 3,680 genes associated with glyphosateinduced DMRs, only 7% were also implicated in methylation changes following biotic or salinity stress. These results demonstrate that plants respond to herbicide stress through changes in methylation patterns that are, in general, dose-sensitive and, at least partially, stress-specific.
- Herbicide injury induces DNA methylome alterations in ArabidopsisKim, Gunjune; Clarke, Christopher R.; Larose, Hailey; Tran, Hong T.; Haak, David C.; Zhang, Liqing; Askew, Shawn D.; Barney, Jacob; Westwood, James H. (PeerJ, 2017-07-20)The emergence of herbicide-resistant weeds is a major threat facing modern agriculture. Over 470 weedy-plant populations have developed resistance to herbicides. Traditional evolutionary mechanisms are not always sufficient to explain the rapidity with which certain weed populations adapt in response to herbicide exposure. Stress-induced epigenetic changes, such as alterations in DNA methylation, are potential additional adaptive mechanisms for herbicide resistance. We performed methylC sequencing of Arabidopsis thaliana leaves that developed after either mock treatment or two different sub-lethal doses of the herbicide glyphosate, the most-used herbicide in the history of agriculture. The herbicide injury resulted in 9,205 differentially methylated regions (DMRs) across the genome. In total, 5,914 of these DMRs were induced in a dose-dependent manner, wherein the methylation levels were positively correlated to the severity of the herbicide injury, suggesting that plants can modulate the magnitude of methylation changes based on the severity of the stress. Of the 3,680 genes associated with glyphosate-induced DMRs, only 7% were also implicated in methylation changes following biotic or salinity stress. These results demonstrate that plants respond to herbicide stress through changes in methylation patterns that are, in general, dose-sensitive and, at least partially, stress-specific.
- Identification and analysis of the N-6-methyladenosine in the Saccharomyces cerevisiae transcriptomeChen, Wei; Tran, Hong T.; Liang, Zhiyong; Lin, Hao; Zhang, Liqing (Springer Nature, 2015-09-07)Knowledge of the distribution of N-6-methyladenosine (m(6)A) is invaluable for understanding RNA biological functions. However, limitation in experimental methods impedes the progress towards the identification of m(6)A site. As a complement of experimental methods, a support vector machine based-method is proposed to identify m(6)A sites in Saccharomyces cerevisiae genome. In this model, RNA sequences are encoded by their nucleotide chemical property and accumulated nucleotide frequency information. It is observed in the jackknife test that the accuracy achieved by the proposed model in identifying the m(6)A site was 78.15%. For the convenience of experimental scientists, a webserver for the proposed model is provided at http://lin.uestc.edu.cn/server/m6Apred.php.
- Identification of Differentially Methylated Sites with Weak Methylation EffectsTran, Hong T.; Zhu, Hongxiao; Wu, Xiaowei; Kim, Gunjune; Clarke, Christopher R.; Larose, Hailey; Haak, David C.; Askew, Shawn D.; Barney, Jacob; Westwood, James H.; Zhang, Liqing (MDPI, 2018-02-08)Deoxyribonucleic acid (DNA) methylation is an epigenetic alteration crucial for regulating stress responses. Identifying large-scale DNA methylation at single nucleotide resolution is made possible by whole genome bisulfite sequencing. An essential task following the generation of bisulfite sequencing data is to detect differentially methylated cytosines (DMCs) among treatments. Most statistical methods for DMC detection do not consider the dependency of methylation patterns across the genome, thus possibly inflating type I error. Furthermore, small sample sizes and weak methylation effects among different phenotype categories make it difficult for these statistical methods to accurately detect DMCs. To address these issues, the wavelet-based functional mixed model (WFMM) was introduced to detect DMCs. To further examine the performance of WFMM in detecting weak differential methylation events, we used both simulated and empirical data and compare WFMM performance to a popular DMC detection tool methylKit. Analyses of simulated data that replicated the effects of the herbicide glyphosate on DNA methylation in Arabidopsis thaliana show that WFMM results in higher sensitivity and specificity in detecting DMCs compared to methylKit, especially when the methylation differences among phenotype groups are small. Moreover, the performance of WFMM is robust with respect to small sample sizes, making it particularly attractive considering the current high costs of bisulfite sequencing. Analysis of empirical Arabidopsis thaliana data under varying glyphosate dosages, and the analysis of monozygotic (MZ) twins who have different pain sensitivities—both datasets have weak methylation effects of <1%—show that WFMM can identify more relevant DMCs related to the phenotype of interest than methylKit. Differentially methylated regions (DMRs) are genomic regions with different DNA methylation status across biological samples. DMRs and DMCs are essentially the same concepts, with the only difference being how methylation information across the genome is summarized. If methylation levels are determined by grouping neighboring cytosine sites, then they are DMRs; if methylation levels are calculated based on single cytosines, they are DMCs.
- Objective and Comprehensive Evaluation of Bisulfite Short Read Mapping ToolsTran, Hong T.; Porter, Jacob; Sun, Ming-an; Xie, Hehuang David; Zhang, Liqing (Hindawi, 2014-04-15)Background. Large-scale bisulfite treatment and short reads sequencing technology allow comprehensive estimation of methylation states of Cs in the genomes of different tissues, cell types, and developmental stages. Accurate characterization of DNA methylation is essential for understanding genotype phenotype association, gene and environment interaction, diseases, and cancer. Aligning bisulfite short reads to a reference genome has been a challenging task. We compared five bisulfite short read mapping tools, BSMAP, Bismark, BS-Seeker, BiSS, and BRAT-BW, representing two classes of mapping algorithms (hash table and suffix/prefix tries). We examined their mapping efficiency (i.e., the percentage of reads that can be mapped to the genomes), usability, running time, and effects of changing default parameter settings using both real and simulated reads. We also investigated how preprocessing data might affect mapping efficiency. Conclusion. Among the five programs compared, in terms of mapping efficiency, Bismark performs the best on the real data, followed by BiSS, BSMAP, and finally BRAT-BW and BS-Seeker with very similar performance. If CPU time is not a constraint, Bismark is a good choice of program for mapping bisulfite treated short reads. Data quality impacts a great deal mapping efficiency. Although increasing the number of mismatches allowed can increase mapping efficiency, it not only significantly slows down the program, but also runs the risk of having increased false positives. Therefore, users should carefully set the related parameters depending on the quality of their sequencing data.