Browsing by Author "Trani, Antonio A."
Now showing 1 - 20 of 139
Results Per Page
Sort Options
- Active Noise Reduction Versus Passive Designs in Communication Headsets: Speech Intelligibility and Pilot Performance Effects in an Instrument Flight SimulationValimont, Robert Brian (Virginia Tech, 2006-04-20)Researchers have long known that general aviation (GA) aircraft exhibit some of the most intense and potentially damaging sound environments to a pilot's hearing. Yet, another potentially more ominous result of this noise-intense environment is the masking of the radio communications. Radio communications must remain intelligible, as they are imperative to the safe and efficient functioning of the airspace, especially the airspace surrounding our busiest airports, Class B and Class C. However, the high amplitude, low frequency noise dominating the GA cockpit causes an upward spreading of masking with such inference that it renders radio communications almost totally unintelligible, unless the pilot is wearing a communications headset. Even with a headset, some researchers have stated that the noise and masking effects overcome the headset performance and still threaten the pilot's hearing and overall safety while in the aircraft. In reaction to this situation, this experiment sought to investigate the effects which active noise reduction (ANR) headsets have on the permissible exposure levels (PELs), speech intelligibility, workload, and ultimately the pilot's performance inside the cockpit. Eight instrument-rated pilot participants flew through different flight tasks of varying levels and types of workload embedded in four 3.5 hour flight scenarios while wearing four different headsets. The 3.5 hours were considered long duration due the instrument conditions, severe weather conditions, difficult flight tasks, and the fatiguing effects of a high intensity noise environment. The noise intensity and spectrum in the simulator facility were specifically calibrated to mimic those of a Cessna 172. Speech intelligibility of radio communications was modified using the Speech Transmission Index (STI), while measures of flight performance and workload were collected to examine any relationships between workload, speech intelligibility, performance, and type of headset. It is believed that the low frequency attenuation advantages afforded by the ANR headset decreased the signal-to-noise ratio, thereby increasing speech intelligibility for the pilot. This increase may positively affect workload and flight performance. Estimates of subjective preference and comfort were also collected and analyzed for relevant relationships. The results of the experiment supported the above hypotheses. It was found that headsets which incorporate ANR technology do increase speech intelligibility which has a direct inverse influence on workload. For example, an increase in speech intelligibility is seen with a concomitant decrease in pilot workload across all types and levels of workload. Furthermore, flight task performance results show that the pilot's headset can facilitate safer flight performance. However, the factors that influence performance are more numerous and complex than those that affect speech intelligibility or workload. Factors such as the operational performance of the communications system in the headset, in addition to the ANR technology, were determined to be highly influential factors in pilot performance. This study has concluded that the pilot's headset has received much research and design attention as a noise attenuation device. However, it has been almost completely overlooked as a tool which could be used to facilitate the safety and performance of a general aviation flight. More research should focus on identifying and optimizing the headset components which contribute most to the results demonstrated in this experiment. The pilot's headset is a component of the aviation system which could economically improve the safety of the entire system.
- An adaptive strategy for providing dynamic route guidance under non-recurrent traffic congestionLee, Sang-Keon (Virginia Tech, 1996-05-28)Traffic congestion on urban road networks has been recognized as one of the most serious problems with which modern cities are confronted. It is generally anticipated that Dynamic Route Guidance Systems (DRGS) will play an important role in reducing urban traffic congestion and improving traffic flows and safety. One of the most critical issues in designing these systems is in the development of optimal routing strategies that would maximize the benefits to overall system as well as individual users. Infrastructure based DRGS have advantage of pursuing system optimal routing strategy, which is more essential under abnormal traffic conditions such as non-recurrent congestion and natural disaster. However user compliance could be a problem under such a strategy, particularly when some of equipped drivers are urged not to choose minimum travel time path for the sake of improving the total network travel time. On the other hand, In-vehicle based DRGS can utilize the user-specified route selection criteria to avoid "Braess Paradox" under normal traffic conditions. However, it may be of little use under abnormal traffic conditions and high DRGS market penetration. In conducting the comparative analysis between system optimal strategy and user equilibrium strategy, significant differences were found within the mid-range traffic demand. The maximum total travel time difference occurs when the level of traffic demand is half of the system capacity. At this point, system optimal route guidance strategy can save more than 11% of the total travel time of user equilibrium route guidance strategy. The research proposes an adaptive routing strategy as an efficient dynamic route guidance under non-recurrent traffic congestion. Computation results show that there is no need to implement system optimal routing strategy at the initial stage of the incident. However, it is critical to use system optimal routing strategy as freeway and arterial are getting congested and the queue delay in freeway increases. The adaptive routing strategy is evaluated using Traffic simulation model, INTEGRATION. According to simulation results using an ideal network, the travel time saving ratio is maximum when both arterial and freeway have normal traffic demand under incident. In case of a realistic network, the adaptive routing strategy also proved to save the total travel time between 3% to 10% over the traditional user equilibrium routing strategy. The reduction of total travel time increases as the incident duration increases. Consequently, it is concluded that the adaptive routing strategy for DRGS is more efficient than using user equilibrium routing strategy alone.
- An Agent-based Model for Airline Evolution, Competition, and Airport CongestionKim, Junhyuk (Virginia Tech, 2005-05-25)The air transportation system has grown significantly during the past few decades. The demand for air travel has increased tremendously as compared to the increase in the supply. The air transportation system can be divided into four subsystems: airports, airlines, air traffic control, and passengers, each of them having different interests. These subsystems interact in a very complex way resulting in various phenomena. On the airport side, there is excessive flight demand during the peak hours that frequently exceeds the airport capacity resulting in serious flight delays. These delays incur costs to the airport, passengers, and airlines. The air traffic pattern is also affected by the characteristics of the air transportation network. The current network structure of most major airlines in United States is a hub-and-spoke network. The airports are interested in reducing congestion, especially during the peak time. The airlines act as direct demand to the airport and as the supplier to the passengers. They sometimes compete with other airlines on certain routes and sometimes they collaborate to maximize revenue. The flight schedule of airlines directly affects the travel demand. The flight schedule that minimizes the schedule delay of passengers in directed and connected flights will attract more passengers. The important factors affecting the airline revenue include ticket price, departure times, frequency, and aircraft type operated on each route. The revenue generated from airline depends also on the behavior of competing airlines, and their flight schedules. The passengers choose their flight based on preferred departure times, offered ticket prices, and willingness of airlines to minimize delay and cost. Hence, all subsystems of air transportation system are inter-connected to each other, meaning, strategy of each subsystem directly affects the performance of other subsystems. This interaction between the subsystems makes it more difficult to analyze the air transportation system. Traditionally, analytical top-down approach has been used to analyze the air transportation problem. In top-down approach, a set of objectives is defined and each subsystem is fixed in the overall scheme. On the other hand, in a bottom-up approach, many issues are addressed simultaneously and each individual system has greater autonomy to make decisions, communicate and to interact with one another to achieve their goals when considering complex air transportation system. Therefore, it seems more appropriate to approach the complex air traffic congestion and airline competition problems using a bottom-up approach. In this research, an agent-based model for the air transportation system has been developed. The developed model considers each subsystem as an independent type of agent that acts based on its local knowledge and its interaction with other agents. The focus of this research is to analyze air traffic congestion and airline competition in a hub-and-spoke network. The simulation model developed is based on evolutionary computation. It seems that the only way for analyzing emergent phenomenon (such as air traffic congestion) is through the development of simulation models that can simulate the behavior of each agent. In the agent-based model developed in this research, agents that represent airports can increase capacity or significantly change landing fee policy, while the agents that represent airlines learn all the time, change their markets, fare structure, flight frequencies, and flight schedules. Such a bottom-up approach facilitates a better understanding of the complex nature of congestion and gains more insights into the competition in air transportation, hence making it easier to understand, predict and control the overall performance of the complex air transportation system.
- AHS Maglev System ArchitectureSiridhara, Siradol (Virginia Tech, 1999-08-23)In the period between 1993-1998 a vision was presented of an Automated Highway System developed under a contract naming Virginia Tech one of the three ITS Research Centers of Excellence in the United States by the Federal Highway Administration. The AHS envisioned would consist of a guideway constructed in the rights-of-way of the Interstate Highway System which would utilized magnetic levitation ("maglev") to propel closely-space, individual vehicles at high speeds with full longitudinal and lateral control. In this dissertation the system architecture is described in detail. The system architecture is organized according to system structural, system operational, and vehicle subsystem technological elements. The structural aspects are concerned with the decision making capability allocated between a vehicle and the guideway, the characteristics of the control and sensing equipment contained within the guideway, the traveling unit configuration, and certain of the vehicle's structural and equipment considerations. The operational aspects are concerned with vehicle entrainment policy, system fleet mixture, network type and control functions, and guideway lane separation requirements. The vehicle subsystem and the vehicle longitudinal and lateral control subsystem. The operational architecture concentrates on developing and evaluating strategies for forming platoons of vehicles on the guideway since the average platoon sizes determine the practical capacity of the guideway as well as the safety of operation. It is instructive to review how platoons form naturally on conventional highways as a prelude to developing a strategy for forming platoon on the AHS Maglev Guideway. A novel, non-linear car-following model called "car maneuvering" is explored by defining the stimuli on the right-hand side of the model in terms of several vehicles ahead of the response vehicle. In order to add still more realism in developing a strategy for platoon formation in a guideway under automatic control, an additional spacing dependent term is introduced to achieve a "magnetic coupling headway" between platooned vehicles. Once vehicles are magnetically coupled, the desired intraplatoon headway is maintained through attraction and repulsion. In this dissertation the term "architecture" is interpreted in the broadest possible sense based on the assumption that any transportation system intended to serve society throughout the 21st Century and beyond must address a hierarchy of goals and issues ranging from the strategic (sustainable development) to the tactical (the concept of operations) and including the in-between (interfacing with the existing transportation system). In the past, transportation planning, policy, investment and operating decisions have been made in isolation from each other with incomplete information inputs from a broad base of disciplines and sectors, without a synthesizing instrumentality. A new approach is described to promote the best informed decisions governing planning and management. The approach features a realistic framework for allocating public sector-private sector effort, an instrumentality for generating the knowledge needed to conceive and implement the new transportation paradigm, and a strategic vision for rallying support. The new approach to the problem begins with a strategic vision for society's AHS infrastructure. We believe that the strategic vision must be based on the concept of "sustainable development." To affect this new strategic vision, higher budgets will be a necessary, but not a sufficient condition. A fundamental Decision Support System (DSS) with knowledge bases with contributions from the braid spectrum of science and engineering disciplines, and a methodology based on system dynamics capable of synthesizing these contributions is proposed. The AHS Maglev Alternative is compared to a "Do-Nothing" Alternative and a "Traditional Expansion" Alternative using user and nonuser benefit analyses. The advantages of AHS Maglev are seen to be overwhelming. Moreover, the ability of AHS Maglev to alleviate airport congestion by reducing short and medium range of flights, and to serve as a structuring device for rational population distribution is shown.
- Air Traffic Control Resource Management Strategies and the Small Aircraft Transportation System: A System Dynamics PerspectiveGalvin, James J. (Virginia Tech, 2002-12-02)The National Aeronautics and Space Administration (NASA) is leading a research effort to develop a Small Aircraft Transportation System (SATS) that will expand air transportation capabilities to hundreds of underutilized airports in the United States. Most of the research effort addresses the technological development of the small aircraft as well as the systems to manage airspace usage and surface activities at airports. The Federal Aviation Administration (FAA) will also play a major role in the successful implementation of SATS, however, the administration is reluctant to embrace the unproven concept. The purpose of the research presented in this dissertation is to determine if the FAA can pursue a resource management strategy that will support the current radar-based Air Traffic Control (ATC) system as well as a Global Positioning Satellite (GPS)-based ATC system required by the SATS. The research centered around the use of the System Dynamics modeling methodology to determine the future behavior of the principle components of the ATC system over time. The research included a model of the ATC system consisting of people, facilities, equipment, airports, aircraft, the FAA budget, and the Airport and Airways Trust Fund. The model generated system performance behavior used to evaluate three scenarios. The first scenario depicted the base case behavior of the system if the FAA continued its current resource management practices. The second scenario depicted the behavior of the system if the FAA emphasized development of GPS-based ATC systems. The third scenario depicted a combined resource management strategy that supplemented radar systems with GPS systems. The findings of the research were that the FAA must pursue a resource management strategy that primarily funds a radar-based ATC system and directs lesser funding toward a GPS-based supplemental ATC system. The most significant contribution of this research was the insight and understanding gained of how several resource management strategies and the presence of SATS aircraft may impact the future US Air Traffic Control system.
- Airport landside planning and simulation model (ALPS)Kulkarni, Mohit (Virginia Tech, 1994-02-14)The increasing demand on the air transportation system is causing delays due to congestion, leading to monetary losses and passenger inconvenience. Traditionally, research has been conducted to improve the airside component of the airport. This led to improvements in the airside component in tum leading to increased demand. The landside was not considered as a serious threat to the capacity of the airport. However, the increased demand and inconsistent improvements to the landside has made this airport component critical at some facilities. Research in recent years has produced many methods to assess landside capacity and to predict the behavior of the system under different demand scenarios. Many of these tools are cumbersome and are not suitable for every day use of planning professionals. This research is aimed at developing a computer based simulation model (ALPS) to estimate or predict the capacity of the landside components under varying scenarios. ALPS is a discrete-event simulation model developed using EXTEND (version 2 © Imagine That inc., 1992) a simulation software based on the 'C' programming language. This model is designed to be able to simulate a given airport in a short time with accurate results. The model runs on a Apple Macintosh computer and needs no special programming for effective use. The model is well suited for every day use of planning professionals.
- An Airspace Planning and Collaborative Decision Making Model Under Safety, Workload, and Equity ConsiderationsStaats, Raymond William (Virginia Tech, 2003-04-04)We develop a detailed, large-scale, airspace planning and collaborative decision-making model (APCDM), that is part of an $11.5B, 10-year, Federal Aviation Administration (FAA)-sponsored effort to increase U.S. National Airspace (NAS) capacity by 30 percent. Given a set of flights that must be scheduled during some planning horizon, we use a mixed-integer programming formulation to select a set of flight plans from among alternatives subject to flight safety, air traffic control workload, and airline equity constraints. Novel contributions of this research include three-dimensional probabilistic conflict analyses, the derivation of valid inequalities to tighten the conflict safety representation constraints, the development of workload metrics based on average (and its variance from) peak load measures, and the consideration of equity among airline carriers in absorbing the costs related to re-routing, delays, and cancellations. We also propose an improved set of flight plan cost factors for representing system costs and investigating fairness issues by addressing flight dependencies occurring in hubbed operations, as well as market factors such as schedule convenience, reliability, and the timeliness of connections. The APCDM model has potential use for both tactical and strategic applications, such as air traffic control in response to severe weather phenomenon or spacecraft launches, FAA policy evaluation, Homeland Defense contingency planning, and military air campaign planning. The model is tested to consider various airspace restriction scenarios imposed by dynamic severe weather systems and space launch Special Use Airspace (SUA) impositions. The results from this model can also serve to augment the FAA's National Playbook of standardized flight profiles in different disruption-prone regions of the National Airspace.
- Analysis of Freeway Weaving Areas Using Corridor Simulator and Highway Capacity ManualRamachandran, Suresh (Virginia Tech, 1997-12-01)Weaving is defined as the crossing of two or more traffic streams traveling in the same direction along a significant length of the highway without the aid of traffic control devices . The traditional methods used for design and operational analysis of a highway is the Highway Capacity Manual (HCM). The traditional weaving methods in the highway capacity manual use road geometry and traffic volume as inputs and provide an estimate of speed as an output. CORSIM is a new computer simulation model developed by Federal Highway Administration (FHWA) for simulation of traffic behavior on integrated urban transportation networks of freeway and surface streets. The intent of this research is to identify the difference in the results by using the new CORSIM simulation and the traditional HCM approach in modeling the weaving sections on a freeway and make recommendations. The research will also compare the modeling strategy and provide analysis of the output.
- Analysis of Potential Wake Turbulence Encounters in Current and NextGen Flight OperationsSchroeder, Nataliya (Virginia Tech, 2011-01-31)Wake vortices pose a threat to a following aircraft, because they can induce a roll and compromise the safety of everyone on board. Caused by a difference in pressure between the upper and the lower part of the wings, these invisible flows of air are a major hazard and have to be avoided by separating the aircraft at considerable distances. One of the known constraints in airport capacity for both departure and arrival operations is the large headway resulting from the wake spacing separation criteria. Reducing wake vortex separations to a safe level between successive aircraft can increase capacity in the National Airspace System (NAS) with corresponding savings in delay times. One of the main goals of the Wake Encounter Model (WEM) described in this thesis is to assess the outcome from future reduced separation criteria in the NAS. The model has been used to test probable encounters in today's operations, and can also be used to test NextGen scenarios, such as Close Parallel Approaches and reduced in-trail separation flights. This thesis presents model enhancements to account for aircraft turning maneuvers, giving the wake a more realistic shape. Three major airspaces, New York, Southern California and Atlanta, were analyzed using the original and the enhanced WEM to determine if the enhanced model better represents the conditions in today's operations. Additionally, some analysis on the wake lateral travel for closely spaced runways is presented in this thesis. Finally, some extension tools for post -analysis, such as animation tool and various graphs depicting the interactions between wake pairs were developed.
- AQM Shell Development - Creating a Framework for Airspace and Airfield Operations and Air Quality Visualization SoftwarePeterson, Todd Alan (Virginia Tech, 1997-09-22)It is believed that the analysis of air traffic impacts on air quality will benefit from attention to the three-dimensional nature of the air traffic network as well as the actions of individual aircraft during the study period. With the existence of air traffic simulation models, the actions of individual aircraft may already be defined in a simulated environment. SIMMOD, the Federal Aviation Administration's airport and airspace modeling software, performs such models of scheduled air traffic. The results of such models may be used to determine the impacts of scheduled air traffic on air quality as well as other parameters. This report addresses the interpretation of output from SIMMOD models for use in air quality analysis and visualization of the air traffic network, and the application of these techniques in a stand-alone computer program. This program, named AQM for its purpose in assisting development of Air Quality Models, provides a working framework for future development of software for detailed air quality analysis and visualization.
- Assessing the relationship between recurring and nonrecurring traffic congestionKuchi, Mahathi B. (Virginia Tech, 1994-08-13)This discussion develops an approach for using fractal geometry and diffusion limited aggregation to describe highway traffic flow. The formulation is platoon based and is most applicable for describing uninterrupted-flow facilities. The model explains empirical models in terms of fractal dimensions. The concepts of change in length of a platoon and a discrete spacing unit are described for the first time in this paper. Boundary values of various fractal dimensions are calculated for different HCM freeway LOS designations. A state of flow equation established in the model represents both microscopic and macroscopic aspects of a traffic stream. Using the same traffic flow model, recurring and nonrecurring types of congestion were quantified. A congestion evaluation index was developed to address the two types of congestion which can also be used as an performance-measure in monitoring a Congestion Management System (CMS). A few ideas were suggested for quantifying indirect benefits of CMS and furthering the present research trend.
- Assessment of Fracture Resistance of Asphalt Overlays through Heavy Vehicle Simulator and Laboratory Testing: Synthetic Fiber and Rubber Modified SMA MixesSalado Martinez, Freddie Antonio (Virginia Tech, 2020-05-27)Road administrators have to make decisions regarding the maintenance and rehabilitation of many existing jointed Portland Cement Concrete (PCC) pavements in the road network. Since these pavements are in general expensive to rehabilitate, agencies often opt for overlaying the deteriorated PCC pavement with Hot Mix Asphalt (HMA), resulting in a composite pavement. Unfortunately, the tensile stresses and strains at the bottom of the overlay developed from the movement of the joints, which are caused by the traffic and the changes in temperature, will create cracks on the surface known as reflective cracking. Reflective cracking can reduce the life of a pavement by allowing water or other particles to get into the underlying layers, which causes the pavement structure to lose strength. To improve the performance of the composite pavement, road agencies have studied mitigations techniques to delay the initiation and propagation of those cracks reflected from the PCC joints and cracks. Traditionally, these studies have relied only on laboratory testing or nondestructive tests. This dissertation expands the traditional approach by adding full-scale Accelerate Pavement Testing (APT) to a laboratory effort to investigate enhanced asphalt overlays that delay the initiation and propagation of cracks reflected from the PCC joints. The study was organized into three complementary experiments. The first experiment included the first reflective cracking study of hot-mix asphalt (HMA) overlays over jointed Portland cement concrete pavements (PCCP) conducted at the Virginia APT facility. A Heavy Vehicle Simulator (HVS) was used to compare the reflective cracking performance of a Stone Matrix Asphalt (SMA) control mix with a modified mix with a synthetic fiber. The discussion includes the characterization of the asphalt mixes, the pavement structure, construction layout, the equipment used, the instrumentation installed, and lessons learned. Results showed that the fiber-modified mix had a higher resistance to fracture, which increases the pavement life by approximately 50%. The second experiment compared the cracking resistance of the same control and modified mixes in the laboratory. Four cracking resistance tests were performed on each mix. These four tests are: (1) Indirect Tensile Asphalt Cracking Test (IDEAL-CT), which measures the Cracking Test index (CTindex); (2) Semicircular Bend Test-Illinois (SCB-IL), which measures the critical strain energy release rate (Jc); (3) Semicircular Bend-Louisiana Transportation Research Center (SCB-LTRC), which measures the Flexibility Index (FI); and (4) Overlay Test (OT), which measures the Cracking Propagation Rate (CPR). The results from the four tests showed that the fiber-modified mix had a better resistance to cracking, confirming the APT test results. The laboratory assessment also suggested that the IDEAL-CT and SCB-IL test appear to be the most practical for implementation. The third phase evaluated the performance of mixes designed with a high content of Reclaimed Asphalt Pavement (RAP) and an enhanced asphalt-rubber extender, which comprises three primary components: plain soft bitumen, fine crumb rubber and an Activated Mineral Binder Stabilizer (AMBS). The experiment evaluated the fracture resistance of nine mixes designed with different rates of recycled asphalt pavement (RAP) and asphalt-rubber, compare them with a traditional mix, and propose an optimized mixture for use in overlays of concrete pavements. The mixes were designed with different rates of RAP (15, 30, 45%) and asphalt-rubber extender (0, 30, and 45%) following generally, the design requirements for an SMA mix in Virginia. The laboratory test recommended in the second experiment, IDEAL-CT and SCB-IL, were used to determine the fracture resistance of the mixes. The results showed that the addition of RAP decreases fracture resistance, but the asphalt-rubber extender improves it. A mix designed that replaced 30% of the binder with asphalt-rubber extender and 15% RAP had the highest resistance to fracture according to both. Also, as expected, all the mixed had a low susceptibility to rutting.
- Assessment of Vehicle-to-Vehicle Communication based Applications in an Urban NetworkKim, Taehyoung (Virginia Tech, 2015-06-23)Connected Vehicle research has emerged as one of the highest priorities in the transportation systems because connected vehicle technology has the potential to improve safety, mobility, and environment for the current transportation systems. Various connected vehicle based applications have been identified and evaluated through various measurements to assess the performance of connected vehicle applications. However, most of these previous studies have used hypothetical study areas with simple networks for connected vehicle environment. This study represents connected vehicle environment in TRANSIMS to assess the performance of V2V communication applications in the realistic urban network. The communication duration rate and spatial-temporal dispersion of equipped vehicles are investigated to evaluate the capability of V2V communication based on the market penetration rate of equipped vehicles and wireless communication coverage in the whole study area. The area coverage level is used to assess the spatial-temporal dispersion of equipped vehicles for two study areas. The distance of incident information propagation and speed estimation error are used to measure the performance of event-driven and periodic applications based on different market penetration rates of equipped vehicles and wireless communication coverage in both morning peak and non-peak times. The wireless communication coverage is the major factor for event-driven application and the market penetration rate of equipped vehicles has more impact on the performance of periodic application. The required minimum levels of deployment for each application are determined for each scenario. These study findings will be useful for making decisions about investments on deployment of connected vehicle applications to improve the current transportation systems. Notably, event-driven applications can be reliably deployed in the initial stage of deployment despite the low level of market penetration of equipped vehicles.
- Automated conversion of milepoint data to intersection/link structure:an application of GIS in transportationAkundi, Balakrishna (Virginia Tech, 1990-11-20)Network data restructuring is an essential function in Geographic Information Systems (GIS) when adapted to transportation. Implementing effective data restructuring models in GIS allows users to collect and maintain data in the format with which they are most familiar while allowing others to utilize it in a format they require. Aggregation and disaggregation of network data facilitates storage, display and plotting times. There could however be important adverse effects. The effects of generalizing attribute data for aggregation/disaggregation is being researched here. Milepoint referenced data in road inventory files provides valuable network information for transportation research. Individual records in these files represent variable length sections of roads. A new record is created each time a highway attribute changes. Consequently, a segment of road between two intersections may be represented by several records in a road inventory file. Further, all attributes in these records are associated with both directions of travel along a road. Many transportation analysis models require networks to be represented by a node-link structure where nodes symbolize an intersection of two or more roads. Further, if a road is two directional, it is represented by two links each of which has its own set of attributes. To utilize road inventory data in these analysis models, network information has to be converted into an intersection/link format. This process involves aggregating· and disaggregating attribute data to represent longer and shorter road segments and also disaggregating data into bi-directional information. This thesis describes data conversion efforts needed to produce intersectional-link network representations. The development of a microcomputer model for data conversion is detailed and application issues and model sensitivities are addressed.
- Aviation Global Demand Forecast Model Development: Air Transportation Demand Distribution and Aircraft Fleet EvolutionFreire Burgos, Edwin R. (Virginia Tech, 2017-09-08)The Portfolio Analysis Management Office (PAMO) for the Aeronautics Research Mission Directorate (ARMD) at NASA Headquarters tasked the Systems Analysis and Concepts Directorate at NASA Langley to combine efforts with Virginia Tech to develop a global demand model with the capability to predict future demand in the air transportation field. A previous study (Alsalous, 2015) started the development of the Global Demand Mode (GDM) to predict air travel demand based on Gross Domestic Product (GDP) and population trends for 3,974 airports worldwide. The study was done from year 2016 to year 2040. This research project intends to enhance the GDM capabilities. A Fratar model is implemented for the distribution of the forecast demand during each year. The Fratar model uses a 3,974 by 3,974 origin-destination matrix to distribute the demand among 55,612 unique routes in the network. Moreover, the GDM is capable to estimate the aircraft fleet mix per route and the number of flights per aircraft that are needed to satisfy the forecast demand. The model adopts the aircraft fleet mix from the Official Airline Guide data for the year 2015. Once the aircraft types are distributed and flights are assigned, the GDM runs an aircraft retirement and replacement analysis to remove older generation aircraft from the network and replace them with existing or newer aircraft. The GDM continues to evolve worldwide aircraft fleet by introducing 14 new generation aircraft from Airbus, Boeing, Bombardier, and Embraer and 5 Advanced Technology Aircraft from NASA.
- Calibration and Comparison of the VISSIM and INTEGRATION Microscopic Traffic Simulation ModelsGao, Yu (Virginia Tech, 2008-09-05)Microscopic traffic simulation software have gained significant popularity and are widely used both in industry and research mainly because of the ability of these tools to reflect the dynamic nature of the transportation system in a stochastic fashion. To better utilize these software, it is necessary to understand the underlying logic and differences between them. A Car-following model is the core of every microscopic traffic simulation software. In the context of this research, the thesis develops procedures for calibrating the steady-state car-following models in a number of well known microscopic traffic simulation software including: CORSIM, AIMSUN, VISSIM, PARAMICS and INTEGRATION and then compares the VISSIM and INTEGRATION software for the modeling of traffic signalized approaches. The thesis presents two papers. The first paper develops procedures for calibrating the steady-state component of various car-following models using macroscopic loop detector data. The calibration procedures are developed for a number of commercially available microscopic traffic simulation software, including: CORSIM, AIMSUN2, VISSIM, Paramics, and INTEGRATION. The procedures are then applied to a sample dataset for illustration purposes. The paper then compares the various steady-state car-following formulations and concludes that the Gipps and Van Aerde steady-state car-following models provide the highest level of flexibility in capturing different driver and roadway characteristics. However, the Van Aerde model, unlike the Gipps model, is a single-regime model and thus is easier to calibrate given that it does not require the segmentation of data into two regimes. The paper finally proposes that the car-following parameters within traffic simulation software be link-specific as opposed to the current practice of coding network-wide parameters. The use of link-specific parameters will offer the opportunity to capture unique roadway characteristics and reflect roadway capacity differences across different roadways. Second, the study compares the logic used in both the VISSIM and INTEGRATION software, applies the software to some simple networks to highlight some of the differences/similarities in modeling traffic, and compares the various measures of effectiveness derived from the models. The study demonstrates that both the VISSIM and INTEGRATION software incorporate a psycho-physical car-following model which accounts for vehicle acceleration constraints. The INTEGRATION software, however uses a physical vehicle dynamics model while the VISSIM software requires the user to input a vehicle-specific speed-acceleration kinematics model. The use of a vehicle dynamics model has the advantage of allowing the model to account for the impact of roadway grades, pavement surface type, pavement surface condition, and type of vehicle tires on vehicle acceleration behavior. Both models capture a driver's willingness to run a yellow light if conditions warrant it. The VISSIM software incorporates a statistical stop/go probability model while current development of the INTEGRATION software includes a behavioral model as opposed to a statistical model for modeling driver stop/go decisions. Both software capture the loss in capacity associated with queue discharge using acceleration constraints. The losses produced by the INTEGRATION model are more consistent with field data (7% reduction in capacity). Both software demonstrate that the capacity loss is recovered as vehicles move downstream of the capacity bottleneck. With regards to fuel consumption and emission estimation the INTEGRATION software, unlike the VISSIM software, incorporates a microscopic model that captures transient vehicle effects on fuel consumption and emission rates.
- Co-Location Decision Tree for Enhancing Decision-Making of Pavement Maintenance and RehabilitationZhou, Guoqing (Virginia Tech, 2011-01-17)A pavement management system (PMS) is a valuable tool and one of the critical elements of the highway transportation infrastructure. Since a vast amount of pavement data is frequently and continuously being collected, updated, and exchanged due to rapidly deteriorating road conditions, increased traffic loads, and shrinking funds, resulting in the rapid accumulation of a large pavement database, knowledge-based expert systems (KBESs) have therefore been developed to solve various transportation problems. This dissertation presents the development of theory and algorithm for a new decision tree induction method, called co-location-based decision tree (CL-DT.) This method will enhance the decision-making abilities of pavement maintenance personnel and their rehabilitation strategies. This idea stems from shortcomings in traditional decision tree induction algorithms, when applied in the pavement treatment strategies. The proposed algorithm utilizes the co-location (co-occurrence) characteristics of spatial attribute data in the pavement database. With the proposed algorithm, one distinct event occurrence can associate with two or multiple attribute values that occur simultaneously in spatial and temporal domains. This research dissertation describes the details of the proposed CL-DT algorithms and steps of realizing the proposed algorithm. First, the dissertation research describes the detailed colocation mining algorithm, including spatial attribute data selection in pavement databases, the determination of candidate co-locations, the determination of table instances of candidate colocations, pruning the non-prevalent co-locations, and induction of co-location rules. In this step, a hybrid constraint, i.e., spatial geometric distance constraint condition and a distinct event-type constraint condition, is developed. The spatial geometric distance constraint condition is a neighborhood relationship-based spatial joins of table instances for many prevalent co-locations with one prevalent co-location; and the distance event-type constraint condition is a Euclidean distance between a set of attributes and its corresponding clusters center of attributes. The dissertation research also developed the spatial feature pruning method using the multi-resolution pruning criterion. The cross-correlation criterion of spatial features is used to remove the nonprevalent co-locations from the candidate prevalent co-location set under a given threshold. The dissertation research focused on the development of the co-location decision tree (CL-DT) algorithm, which includes the non-spatial attribute data selection in the pavement management database, co-location algorithm modeling, node merging criteria, and co-location decision tree induction. In this step, co-location mining rules are used to guide the decision tree generation and induce decision rules. For each step, this dissertation gives detailed flowcharts, such as flowchart of co-location decision tree induction, co-location/co-occurrence decision tree algorithm, algorithm of colocation/co-occurrence decision tree (CL-DT), and outline of steps of SFS (Sequential Feature Selection) algorithm. Finally, this research used a pavement database covering four counties, which are provided by NCDOT (North Carolina Department of Transportation), to verify and test the proposed method. The comparison analyses of different rehabilitation treatments proposed by NCDOT, by the traditional DT induction algorithm and by the proposed new method are conducted. Findings and conclusions include: (1) traditional DT technology can make a consistent decision for road maintenance and rehabilitation strategy under the same road conditions, i.e., less interference from human factors; (2) the traditional DT technology can increase the speed of decision-making because the technology automatically generates a decision-tree and rules if the expert knowledge is given, which saves time and expenses for PMS; (3) integration of the DT and GIS can provide the PMS with the capabilities of graphically displaying treatment decisions, visualizing the attribute and non-attribute data, and linking data and information to the geographical coordinates. However, the traditional DT induction methods are not as quite intelligent as one's expectations. Thus, post-processing and refinement is necessary. Moreover, traditional DT induction methods for pavement M&R strategies only used the non-spatial attribute data. It has been demonstrated from this dissertation research that the spatial data is very useful for the improvement of decision-making processes for pavement treatment strategies. In addition, the decision trees are based on the knowledge acquired from pavement management engineers for strategy selection. Thus, different decision-trees can be built if the requirement changes.
- A comparison between predictive and formative cost-effectiveness evaluation techniques for the assessment of lecture and computer-based multimedia trainingNeale, Vicki L. (Virginia Tech, 1996)In an effort to validate a predictive (as opposed to a traditional formative or summative) cost-effectiveness model, a study was conducted to evaluate Kearsley and Compton's (1981) Benefits Model. Costs were input into the model as they applied to the design, development, and dissemination of two training programs on the topic of teaching individuals how to detect the level of drowsiness of their colleagues during team operations. The benefits of the training programs were identified, classified, and quantified as they applied to two media: lecture and computer-based multimedia. The experimenter identified the training system parameters, training benefits, and operational benefits. Then, for the predictive approach, the relationships between training system parameters, training benefits, and operational benefits were classified based on expert opinion. Quantification concerned the assignment of values (-1 or +1) based on expert opinion. The costs to design, develop, and disseminate the training programs were determined based on the parameters of the project. Finally, based on all information present, experts determined which of two training programs would be the most cost-effective to disseminate. To determine the accuracy of the Benefits Model as a predictive assessment tool, the same identified training system parameters, training benefits, and operational benefits were evaluated from a traditional formative evaluation approach. An empirical evaluation was conducted for the two training programs and a determination of the most cost-effective training medium was made. The data collected in the traditional formative evaluation approach was then compared to the experts' ratings and choice of training programs. For both the predictive and formative evaluation approach to determining cost-effectiveness, the computer-based multimedia was chosen as the most cost-effective training medium. However, for the predictive approach, the experts’ choice was based either solely or heavily on dollar amounts associated with design, development, and dissemination, while the data obtained through the validation process were given little or no weight. All experts stated that it would not have been possible to use the information gathered through application of the Benefits Model to determine cost-effectiveness with any confidence.
- A Computer Model to Estimate Benefits of Data Link Mandates and Reduced Separations across North Atlantic Organized Track SystemGunnam, Aswin Kumar (Virginia Tech, 2013-01-04)The International Civil Aviation Organization (ICAO) proposed to introduce new operational strategies across the North Atlantic (NAT) airspace. This includes Minimum Navigation Performance Specifications (MNPS) airspace to increase the capacity and efficiency of the North Atlantic Organized Track System (NAT OTS). A numerical integration and simulation model called North Atlantic Simulation and Modeling (NATSAM) is developed to study the effects of these new strategies on NAT system performance. The model is capable of investigating the effects of implementing different operational policies and strategies proposed by ICAO such as Reduced Lateral Separation Minimum (RLatSM), NAT Region Data link mandate (DLM), Reduced Longitudinal Separation Minimum (RLongSM), cruise-climb profiles, variable Mach number profiles, step-climbs and other operational concepts to be studied by the ICAO. NATSAM models the individual flight performance using the Base of Aircraft Data (BADA) 3.9 model to calculate the flight profiles and fuel burn. The model employs simple heuristics to execute flight track assignment in the organized track system for each scenario. Detailed outputs and also aggregated outputs are provided by the model from which various key performance indicators (KPI) can be derived to assess the performance of the system.
- A Computer Model to Estimate Commercial Aviation Fuel Consumption and Emissions in the Continental United StatesZou, Zhihao (Virginia Tech, 2013-01-03)A comprehensive model is developed to estimate and predict the fuel consumption and emissions by domestic commercial aviation in the Continental United States. Most of the existing fuel consumption and emission models are limited in their ability to predict the annual fuel burn for air transportation at the national level. For example, those models either require real track data or are developed only to model single flight scenarios. The model developed in this thesis is part of a software framework called the Transportation Systems Analysis Model (TSAM). The model has the capability to estimate fuel consumption and emissions for millions of domestic flights in a year in the continental U.S. TSAM is a nationwide, long-distance, multimodal travel demand forecast model developed at Virginia Tech. The model enables TSAM to quantify fuel and emission metrics for various modes of transportation. The EUROCONTROL Base of Aircraft Data (BADA) is employed as the Aircraft Performance Model to simulate individual flight profiles and calculate fuel burn rates. Fuel consumption on the ground (taxi mode) is estimated separately. Different operational conditions like wind states, terminal area detour, cruise altitude and airport elevation are considered in the model. Emissions of HC, CO, NOx and SOx are computed inside the Landing/Take-off (LTO) cycle based on the fuel consumption estimate, while greenhouse gas of CO2 is calculated for the complete flight cycle.