Browsing by Author "VSathish, Naarayanan Rao"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- f-DSM: An FPGA-Accelerated Distributed Shared Memory for Heterogeneous Instruction-Set-Architecture HardwareVSathish, Naarayanan Rao (Virginia Tech, 2022-03-03)Due to the diminishing relevance of Moore's Law, traditional multi-core systems are increasingly struggling to meet the computational demands of many emerging workloads. Heterogeneous computing, which involves exploiting higher degrees of parallelism (e.g., GPUs) and application-specific specialization (e.g., FPGAs), is increasingly used to meet this demand. An important architectural trend in this space involves using instruction-set-architecture (ISA) heterogeneity. An exemplar case is emerging I/O devices that include CPU cores with ISAs (e.g., ARM, RISC-V) that differ from that of host CPUs (e.g., x86) and have physically discrete memory. Shared-memory programming of such systems requires the Dis- tributed Shared Memory (DSM) abstraction. Software DSM incurs significant OS overhead for maintaining memory coherency. Despite outperforming software predecessors, hardware DSM and cache-coherent interfaces require custom chips and lack the flexibility to experiment with different DSM consistency protocols. This thesis presents fDSM, an FPGA-accelerated DSM framework for ISA-heterogeneous hardware. fDSM implements a high-speed messaging layer to enable inter-node communication across ISA-different CPU cores and a DSM protocol processor that maintains virtual memory coherency using a multiple-reader single- writer DSM algorithm. Experimental studies reveal that fDSM outperforms prior art, including Popcorn Linux's software DSM abstraction, which uses TCP-IP and state-of-the-art Infiniband RDMA messaging layers by 2.8X and 7%, respectively. fDSM also provides reconfigurability and thereby allows implementation and experimentation of different memory consistency models.
- Xar-Trek: Run-time Execution Migration among FPGAs and Heterogeneous-ISA CPUsHorta, Edson; Chuang, Ho-Ren; VSathish, Naarayanan Rao; Philippidis, Cesar; Barbalace, Antonio; Olivier, Pierre; Ravindran, Binoy (ACM, 2021-12-06)Datacenter servers are increasingly heterogeneous: from x86 host CPUs, to ARM or RISC-V CPUs in NICs/SSDs, to FPGAs. Previous works have demonstrated that migrating application execution at run-time across heterogeneous-ISA CPUs can yield significant performance and energy gains, with relatively little programmer effort. However, FPGAs have often been overlooked in that context: hardware acceleration using FPGAs involves statically implementing select application functions, which prohibits dynamic and transparent migration. We present Xar-Trek, a new compiler and run-time software framework that overcomes this limitation. Xar-Trek compiles an application for several CPU ISAs and select application functions for acceleration on an FPGA, allowing execution migration between heterogeneous-ISA CPUs and FPGAs at run-time. Xar-Trek’s run-time monitors server workloads and migrates application functions to an FPGA or to heterogeneous-ISA CPUs based on a scheduling policy. We develop a heuristic policy that uses application workload profiles to make scheduling decisions. Our evaluations conducted on a system with x86-64 server CPUs, ARM64 server CPUs, and an Alveo accelerator card reveal 88%-1% performance gains over no-migration baselines.