Browsing by Author "Van Houtven, George L."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Nitrogen deposition and climate change effects on tree species composition and ecosystem services for a forest cohortVan Houtven, George L.; Phelan, Jennifer N.; Clark, Christopher M.; Sabo, Robert D.; Buckley, John; Thomas, R. Quinn; Horn, Kevin J.; LeDuc, Stephen D. (2019-05)The composition of forests in the northeastern United States and the ecosystem services they provide to future generations will depend on several factors. In this paper, we isolate the effects of two environmental drivers, nitrogen (N) deposition and climate (temperature and precipitation) change, through an analysis of a single cohort of 24 dominant tree species. We assembled a tree database using data from U.S. Forest Service Forest Inventory and Analysis monitoring plots. Applying observed species-specific growth and survival responses, we simulated how forest stands in a 19-state study area would change from 2005 to 2100 under 12 different future N deposition-climate scenarios. We then estimated implications for three selected forest ecosystem services: merchantable timber, aboveground carbon sequestration, and tree diversity. Total tree biomass (for 24 species combined) was positively associated with both increased N deposition and temperatures; however, due to differences in the direction and magnitude of species-specific responses, forest composition varied across scenarios. For example, red maple (Acer rubrum) trees gained biomass under scenarios with more N deposition and more climate change, whereas biomass of yellow birch (Betula alleghaniensis) and red pine (Pinus resinosa) was negatively affected. Projections for ecosystem services also varied across scenarios. Carbon sequestration, which is positively associated with biomass accumulation, increased with N deposition and increasing climate change. Total timber values also increased with overall biomass; however, scenarios with increasing climate change tended to favor species with lower merchantable value, whereas more N deposition favored species with higher merchantable value. Tree species diversity was projected to decrease with greater changes in climate (warmer temperatures), especially in the northwestern, central, and southeastern portions of the study area. In contrast, the effects of N deposition on diversity varied greatly in magnitude and direction across the study area. This study highlights species-specific and regional effects of N deposition and climate change in northeastern U.S. forests, which can inform management decision for air quality and forests in the region, as well as climate policy. It also provides a foundation for future studies that may incorporate other important factors such as multiple cohorts, sulfur deposition, insects, and diseases.
- Supporting cost-effective watershed management strategies for Chesapeake Bay using a modeling and optimization frameworkKaufman, Daniel E.; Shenk, Gary W.; Bhatt, Gopal; Asplen, Kevin W.; Devereux, Olivia H.; Rigelman, Jessica R.; Ellis, J. Hugh; Hobbs, Benjamin F.; Bosch, Darrell J.; Van Houtven, George L.; McGarity, Arthur E.; Linker, Lewis C.; Ball, William P. (2021-10)Extensive efforts to adaptively manage nutrient pollution rely on Chesapeake Bay Program's (Phase 6) Watershed Model, called Chesapeake Assessment Scenario Tool (CAST), which helps decision-makers plan and track implementation of Best Management Practices (BMPs). We describe mathematical characteristics of CAST and develop a constrained nonlinear BMP-subset model, software, and visualization framework. This represents the first publicly available optimization framework for exploring least-cost strategies of pollutant load control for the United States' largest estuary. The optimization identifies implementation options for a BMP subset modeled with load reduction effectiveness factors, and the web interface facilitates interactive exploration of >30,000 solutions organized by objective, nutrient control level, and for similar to 200 counties. We assess framework performance and demonstrate modeled cost improvements when comparing optimization-suggested proposals with proposals inspired by jurisdiction plans. Stakeholder feedback highlights the framework's current utility for investigating cost-effective tradeoffs and its usefulness as a foundation for future analysis of restoration strategies.