Browsing by Author "VandeWoude, Sue"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Inferring the Ecological Niche of Toxoplasma gondii and Bartonella spp. in Wild FelidsEscobar, Luis E.; Carver, Scott; Romero-Alvarez, Daniel; VandeWoude, Sue; Crooks, Kevin R.; Lappin, Michael R.; Craft, Meggan E. (Frontiers, 2017-10-17)Traditional epidemiological studies of disease in animal populations often focus on directly transmitted pathogens. One reason pathogens with complex lifecycles are understudied could be due to challenges associated with detection in vectors and the environment. Ecological niche modeling (ENM) is a methodological approach that overcomes some of the detection challenges often seen with vector or environmentally dependent pathogens. We test this approach using a unique dataset of two pathogens in wild felids across North America: Toxoplasma gondii and Bartonella spp. in bobcats (Lynx rufus) and puma (Puma concolor). We found three main patterns. First, T gondii showed a broader use of environmental conditions than did Bartonella spp. Also, ecological niche models, and Normalized Difference Vegetation Index satellite imagery, were useful even when applied to wide-ranging hosts. Finally, ENM results from one region could be applied to other regions, thus transferring information across different landscapes. With this research, we detail the uncertainty of epidemiological risk models across novel environments, thereby advancing tools available for epidemiological decision-making. We propose that ENM could be a valuable tool for enabling understanding of transmission risk, contributing to more focused prevention and control options for infectious diseases.
- Synergistic China-US Ecological Research is Essential for Global Emerging Infectious Disease PreparednessSmiley Evans, Tierra; Shi, Zhengli; Boots, Michael; Liu, Wenjun; Olival, Kevin J.; Xiao, Xiangming; VandeWoude, Sue; Brown, Heidi E.; Chen, Ji-Long; Civitello, David J.; Escobar, Luis E.; Grohn, Yrjo; Li, Hongying; Lips, Karen; Liu, Qiyoung; Lu, Jiahai; Martinez-Lopez, Beatriz; Shi, Jishu; Shi, Xiaolu; Xu, Biao; Yuan, Lihong; Zhu, Guoqiang; Getz, Wayne M. (Springer, 2020-02-03)The risk of a zoonotic pandemic disease threatens hundreds of millions of people. Emerging infectious diseases also threaten livestock and wildlife populations around the world and can lead to devastating economic damages. China and the USA—due to their unparalleled resources, widespread engagement in activities driving emerging infectious diseases and national as well as geopolitical imperatives to contribute to global health security—play an essential role in our understanding of pandemic threats. Critical to efforts to mitigate risk is building upon existing investments in global capacity to develop training and research focused on the ecological factors driving infectious disease spillover from animals to humans. International cooperation, particularly between China and the USA, is essential to fully engage the resources and scientific strengths necessary to add this ecological emphasis to the pandemic preparedness strategy. Here, we review the world’s current state of emerging infectious disease preparedness, the ecological and evolutionary knowledge needed to anticipate disease emergence, the roles that China and the USA currently play as sources and solutions to mitigating risk, and the next steps needed to better protect the global community from zoonotic disease.