Browsing by Author "Viladomiu, Monica"
Now showing 1 - 13 of 13
Results Per Page
Sort Options
- Computational Modeling-Based Discovery of Novel Classes of Anti-Inflammatory Drugs That Target Lanthionine Synthetase C-Like Protein 2Lu, Pinyi; Hontecillas, Raquel; Horne, William T.; Carbo, Adria; Viladomiu, Monica; Pedragosa, Mireia; Bevan, David R.; Lewis, Stephanie N.; Bassaganya-Riera, Josep (PLOS, 2012-04-11)Background: Lanthionine synthetase component C-like protein 2 (LANCL2) is a member of the eukaryotic lanthionine synthetase component C-Like protein family involved in signal transduction and insulin sensitization. Recently, LANCL2 is a target for the binding and signaling of abscisic acid (ABA), a plant hormone with anti-diabetic and anti-inflammatory effects. Methodology/Principal Findings: The goal of this study was to determine the role of LANCL2 as a potential therapeutic target for developing novel drugs and nutraceuticals against inflammatory diseases. Previously, we performed homology modeling to construct a three-dimensional structure of LANCL2 using the crystal structure of lanthionine synthetase component C-like protein 1 (LANCL1) as a template. Using this model, structure-based virtual screening was performed using compounds from NCI (National Cancer Institute) Diversity Set II, ChemBridge, ZINC natural products, and FDA-approved drugs databases. Several potential ligands were identified using molecular docking. In order to validate the anti-inflammatory efficacy of the top ranked compound (NSC61610) in the NCI Diversity Set II, a series of in vitro and pre-clinical efficacy studies were performed using a mouse model of dextran sodium sulfate (DSS)-induced colitis. Our findings showed that the lead compound, NSC61610, activated peroxisome proliferator-activated receptor gamma in a LANCL2- and adenylate cyclase/cAMP dependent manner in vitro and ameliorated experimental colitis by down-modulating colonic inflammatory gene expression and favoring regulatory T cell responses. Conclusions/Significance: LANCL2 is a novel therapeutic target for inflammatory diseases. High-throughput, structure-based virtual screening is an effective computational-based drug design method for discovering anti-inflammatory LANCL2-based drug candidates.
- Helicobacter pylori Colonization Ameliorates Glucose Homeostasis in Mice through a PPAR γ-Dependent MechanismBassaganya-Riera, Josep; Dominguez-Bello, Maria Gloria; Kronsteiner, Barbara; Carbo, Adria; Pinyi, Lu; Viladomiu, Monica; Pedragosa, Mireia; Zhang, Xiaoying; Sobral, Bruno; Mane, Shrinivasrao P.; Mohapatra, Saroj K.; Horne, William T.; Guri, Amir J.; Groeschl, Michael; Lopez-Velasco, Gabriela; Hontecillas, Raquel (Public Library of Science, 2012-11-15)Background: There is an inverse secular trend between the incidence of obesity and gastric colonization with Helicobacter pylori, a bacterium that can affect the secretion of gastric hormones that relate to energy homeostasis. H. pylori strains that carry the cag pathogenicity island (PAI) interact more intimately with gastric epithelial cells and trigger more extensive host responses than cag− strains. We hypothesized that gastric colonization with H. pylori strains differing in cag PAI status exert distinct effects on metabolic and inflammatory phenotypes. Methodology/Principal Findings: To test this hypothesis, we examined metabolic and inflammatory markers in db/db mice and mice with diet-induced obesity experimentally infected with isogenic forms of H. pylori strain 26695: the cag PAI wild-type and its cag PAI mutant strain 99–305. H. pylori colonization decreased fasting blood glucose levels, increased levels of leptin, improved glucose tolerance, and suppressed weight gain. A response found in both wild-type and mutant H. pylori strain-infected mice included decreased white adipose tissue macrophages (ATM) and increased adipose tissue regulatory T cells (Treg) cells. Gene expression analyses demonstrated upregulation of gastric PPAR γ-responsive genes (i.e., CD36 and FABP4) in H. pylori-infected mice. The loss of PPAR γ in immune and epithelial cells in mice impaired the ability of H. pylori to favorably modulate glucose homeostasis and ATM infiltration during high fat feeding. Conclusions/Significance: Gastric infection with some commensal strains of H. pylori ameliorates glucose homeostasis in mice through a PPAR γ-dependent mechanism and modulates macrophage and Treg cell infiltration into the abdominal white adipose tissue.
- Immunoregulatory mechanisms underlying prevention of colitis-associated colorectal cancer by probiotic bacteriaBassaganya-Riera, Josep; Viladomiu, Monica; Pedragosa, Mireia; De Simone, Claudio; Hontecillas, Raquel (Public Library of Science, 2012-04-12)Background: Inflammatory bowel disease (IBD) increases the risk of colorectal cancer. Probiotic bacteria produce immunoregulatory metabolites in vitro such as conjugated linoleic acid (CLA), a polyunsaturated fatty acid with potent anti-carcinogenic effects. This study aimed to investigate the cellular and molecular mechanisms underlying the efficacy of probiotic bacteria in mouse models of cancer. Methodology/Principal Findings: The immune modulatory mechanisms of VSL#3 probiotic bacteria and CLA were investigated in mouse models of inflammation-driven colorectal cancer. Colonic specimens were collected for histopathology, gene expression and flow cytometry analyses. Immune cell subsets in the mesenteric lymph nodes (MLN), spleen and colonic lamina propria lymphocytes (LPL) were phenotypically and functionally characterized. Mice treated with CLA or VSL#3 recovered faster from the acute inflammatory phase of disease and had lower disease severity in the chronic, tumor-bearing phase of disease. Adenoma and adenocarcinoma formation was also diminished by both treatments. VSL#3 increased the mRNA expression of TNF-α, angiostatin and PPAR γ whereas CLA decreased COX-2 levels. Moreover, VSL#3-treated mice had increased IL-17 expression in MLN CD4+ T cells and accumulation of Treg LPL and memory CD4+ T cells. Conclusions/Significance: Both CLA and VSL#3 suppressed colon carcinogenesis, although VSL#3 showed greater anti-carcinogenic and anti-inflammatory activities than CLA. Mechanistically, CLA modulated expression of COX-2 levels in the colonic mucosa, whereas VSL#3 targeted regulatory mucosal CD4+ T cell responses.
- Modeling the Regulatory Mechanisms by Which NLRX1 Modulates Innate Immune Responses to Helicobacter pylori InfectionPhilipson, Casandra W.; Bassaganya-Riera, Josep; Viladomiu, Monica; Kronsteiner, Barbara; Abedi, Vida; Hoops, Stefan; Michalak, Pawel; Kang, Lin; Girardin, Stephen E.; Hontecillas, Raquel (PLOS, 2015-09-14)Helicobacter pylori colonizes half of the world’s population as the dominant member of the gastric microbiota resulting in a lifelong chronic infection. Host responses toward the bacterium can result in asymptomatic, pathogenic or even favorable health outcomes; however, mechanisms underlying the dual role of H. pylori as a commensal versus pathogenic organism are not well characterized. Recent evidence suggests mononuclear phagocytes are largely involved in shaping dominant immunity during infection mediating the balance between host tolerance and succumbing to overt disease. We combined computational modeling, bioinformatics and experimental validation in order to investigate interactions between macrophages and intracellular H. pylori. Global transcriptomic analysis on bone marrow-derived macrophages (BMDM) in a gentamycin protection assay at six time points unveiled the presence of three sequential host response waves: an early transient regulatory gene module followed by sustained and late effector responses. Kinetic behaviors of pattern recognition receptors (PRRs) are linked to differential expression of spatiotemporal response waves and function to induce effector immunity through extracellular and intracellular detection of H. pylori. We report that bacterial interaction with the host intracellular environment caused significant suppression of regulatory NLRC3 and NLRX1 in a pattern inverse to early regulatory responses. To further delineate complex immune responses and pathway crosstalk between effector and regulatory PRRs, we built a computational model calibrated using time-series RNAseq data. Our validated computational hypotheses are that: 1) NLRX1 expression regulates bacterial burden in macrophages; and 2) early host response cytokines down-regulate NLRX1 expression through a negative feedback circuit. This paper applies modeling approaches to characterize the regulatory role of NLRX1 in mechanisms of host tolerance employed by macrophages to respond to and/or to co-exist with intracellular H. pylori.
- Modeling the Role of Lanthionine Synthetase C-Like 2 (LANCL2) in the Modulation of Immune Responses to Helicobacter pylori InfectionLeber, Andrew; Bassaganya-Riera, Josep; Tubau-Juni, Nuria; Zoccoli-Rodriguez, Victoria; Viladomiu, Monica; Abedi, Vida; Lu, Pinyi; Hontecillas, Raquel (PLOS, 2016-12-09)Immune responses to Helicobacter pylori are orchestrated through complex balances of host-bacterial interactions, including inflammatory and regulatory immune responses across scales that can lead to the development of the gastric disease or the promotion of beneficial systemic effects. While inflammation in response to the bacterium has been reasonably characterized, the regulatory pathways that contribute to preventing inflammatory events during H. pylori infection are incompletely understood. To aid in this effort, we have generated a computational model incorporating recent developments in the understanding of H. pylori-host interactions. Sensitivity analysis of this model reveals that a regulatory macrophage population is critical in maintaining high H. pylori colonization without the generation of an inflammatory response. To address how this myeloid cell subset arises, we developed a second model describing an intracellular signaling network for the differentiation of macrophages. Modeling studies predicted that LANCL2 is a central regulator of inflammatory and effector pathways and its activation promotes regulatory responses characterized by IL-10 production while suppressing effector responses. The predicted impairment of regulatory macrophage differentiation by the loss of LANCL2 was simulated based on multiscale linkages between the tissue-level gastric mucosa and the intracellular models. The simulated deletion of LANCL2 resulted in a greater clearance of H. pylori, but also greater IFNγ responses and damage to the epithelium. The model predictions were validated within a mouse model of H. pylori colonization in wild-type (WT), LANCL2 whole body KO and myeloid-specific LANCL2-/- (LANCL2Myeloid) mice, which displayed similar decreases in H. pylori burden, CX3CR1+ IL-10-producing macrophages, and type 1 regulatory (Tr1) T cells. This study shows the importance of LANCL2 in the induction of regulatory responses in macrophages and T cells during H. pylori infection.
- Modeling the Role of Peroxisome Proliferator-Activated Receptor c and MicroRNA-146 in Mucosal Immune Responses to Clostridium difficileViladomiu, Monica; Hontecillas, Raquel; Pedragosa, Mireia; Carbo, Adria; Hoops, Stefan; Michalak, Pawel; Michalak, Katarzyna; Guerrant, Richard L.; Roche, James K.; Warren, Cirle A.; Bassaganya-Riera, Josep (Public Library of Science, 2012-10-11)Clostridium difficile is an anaerobic bacterium that has re-emerged as a facultative pathogen and can cause nosocomial diarrhea, colitis or even death. Peroxisome proliferator-activated receptor (PPAR) c has been implicated in the prevention of inflammation in autoimmune and infectious diseases; however, its role in the immunoregulatory mechanisms modulating host responses to C. difficile and its toxins remains largely unknown. To characterize the role of PPARc in C. difficileassociated disease (CDAD), immunity and gut pathology, we used a mouse model of C. difficile infection in wild-type and T cell-specific PPARc null mice. The loss of PPARc in T cells increased disease activity and colonic inflammatory lesions following C. difficile infection. Colonic expression of IL-17 was upregulated and IL-10 downregulated in colons of T cellspecific PPARc null mice. Also, both the loss of PPARc in T cells and C. difficile infection favored Th17 responses in spleen and colonic lamina propria of mice with CDAD. MicroRNA (miRNA)-sequencing analysis and RT-PCR validation indicated that miR-146b was significantly overexpressed and nuclear receptor co-activator 4 (NCOA4) suppressed in colons of C. difficile infected mice. We next developed a computational model that predicts the upregulation of miR-146b, downregulation of the PPARc co-activator NCOA4, and PPARc, leading to upregulation of IL-17. Oral treatment of C. difficile-infected mice with the PPARc agonist pioglitazone ameliorated colitis and suppressed pro-inflammatory gene expression. In conclusion, our data indicates that miRNA-146b and PPARc activation may be implicated in the regulation of Th17 responses and colitis in C. difficile-infected mice.
- Nutritional protective mechanisms against gut inflammationViladomiu, Monica; Hontecillas, Raquel; Yuan, Lijuan; Lu, Pinyi; Bassaganya-Riera, Josep (Elsevier, 2013-01-15)Inflammatory bowel disease (IBD) is a debilitating and widespread immune-mediated illness characterized by excessive inflammatory and effector mucosal responses leading to tissue destruction at the gastrointestinal tract. Interactions among the immune system, the commensal microbiota and the host genotype are thought to underlie the pathogenesis of IBD. However, the precise etiology of IBD remains unknown. Diet-induced changes in the composition of the gut microbiome can modulate the induction of regulatory versus effector immune responses at the gut mucosa and improve health outcomes. Therefore, manipulation of gut microbiota composition and the local production of microbial-derived metabolites by using prebiotics, probiotics and dietary fibers is being explored as a promising avenue of prophylactic and therapeutic intervention against gut inflammation. Prebiotics and fiber carbohydrates are fermented by resident microflora into short chain fatty acids (SCFAs) in the colon. SCFAs then activate peroxisome proliferator-activated receptor (PPAR)γ, a nuclear transcription factor with widely demonstrated anti-inflammatory efficacy in experimental IBD. The activation of PPARγ by naturally ocurring compounds such as conjugated linoleic acid, pomegranate seed oil-derived punicic acid, eleostearic acid and abscisic acid has been explored as nutritional interventions that suppress colitis by directly modulating the host immune response. The aim of this review is to summarize the status of innovative nutritional interventions against gastrointestinal inflammation, their proposed mechanisms of action, preclinical and clinical efficacy as well as bioinformatics and computational modeling approaches that accelerate discovery in nutritional and mucosal immunology research.
- Predictive Computational Modeling of the Mucosal Immune Responses during Helicobacter pylori InfectionCarbo, Adria; Bassaganya-Riera, Josep; Pedragosa, Mireia; Viladomiu, Monica; Marathe, Madhav; Eubank, Stephen; Wendesdorf, Katherine; Bisset, Keith R.; Hoops, Stefan; Deng, Xinwei; Alam, Maksudul; Kronsteiner, Barbara; Mei, Yongguo; Hontecillas, Raquel (Public Library of Science, 2013-09-05)T helper (Th) cells play a major role in the immune response and pathology at the gastric mucosa during Helicobacter pylori infection. There is a limited mechanistic understanding regarding the contributions of CD4+ T cell subsets to gastritis development during H. pylori colonization. We used two computational approaches: ordinary differential equation (ODE)-based and agent-based modeling (ABM) to study the mechanisms underlying cellular immune responses to H. pylori and how CD4+ T cell subsets influenced initiation, progression and outcome of disease. To calibrate the model, in vivo experimentation was performed by infecting C57BL/6 mice intragastrically with H. pylori and assaying immune cell subsets in the stomach and gastric lymph nodes (GLN) on days 0, 7, 14, 30 and 60 post-infection. Our computational model reproduced the dynamics of effector and regulatory pathways in the gastric lamina propria (LP) in silico. Simulation results show the induction of a Th17 response and a dominant Th1 response, together with a regulatory response characterized by high levelys of mucosal Treg) cells. We also investigated the potential role of peroxisome proliferator-activated receptor γ (PPARγ) activation on the modulation of host responses to H. pylori by using loss-of-function approaches. Specifically, in silico results showed a predominance of Th1 and Th17 cells in the stomach of the cell-specific PPARγ knockout system when compared to the wild-type simulation. Spatio-temporal, object-oriented ABM approaches suggested similar dynamics in induction of host responses showing analogous T cell distributions to ODE modeling and facilitated tracking lesion formation. In addition, sensitivity analysis predicted a crucial contribution of Th1 and Th17 effector responses as mediators of histopathological changes in the gastric mucosa during chronic stages of infection, which were experimentally validated in mice. These integrated immunoinformatics approaches characterized the induction of mucosal effector and regulatory pathways controlled by PPARγ during H. pylori infection affecting disease outcomes.
- Preventive and Prophylactic Mechanisms of Action of Pomegranate Bioactive ConstituentsViladomiu, Monica; Hontecillas, Raquel; Lu, Pinyi; Bassaganya-Riera, Josep (Hindawi, 2013-04-30)Pomegranate fruit presents strong anti-inflammatory, antioxidant, antiobesity, and antitumoral properties, thus leading to an increased popularity as a functional food and nutraceutical source since ancient times. It can be divided into three parts: seeds, peel, and juice, all of which seem to have medicinal benefits. Several studies investigate its bioactive components as a means to associate them with a specific beneficial effect and develop future products and therapeutic applications. Many beneficial effects are related to the presence of ellagic acid, ellagitannins (including punicalagins), punicic acid and other fatty acids, flavonoids, anthocyanidins, anthocyanins, estrogenic flavonols, and flavones, which seem to be its most therapeutically beneficial components. However, the synergistic action of the pomegranate constituents appears to be superior when compared to individual constituents. Promising results have been obtained for the treatment of certain diseases including obesity, insulin resistance, intestinal inflammation, and cancer. Although moderate consumption of pomegranate does not result in adverse effects, future studies are needed to assess safety and potential interactions with drugs that may alter the bioavailability of bioactive constituents of pomegranate as well as drugs. The aim of this review is to summarize the health effects and mechanisms of action of pomegranate extracts in chronic inflammatory diseases.
- Probiotic bacteria produce conjugated linoleic acid locally in the gut that targets macrophage PPAR gamma to suppress colitisBassaganya-Riera, Josep; Viladomiu, Monica; Pedragosa, Mireia; De Simone, Claudio; Carbo, Adria; Shaykhutdinov, Rustem; Jobin, Christian; Arthur, Janelle C.; Corl, Benjamin A.; Vogel, Hans; Storr, Martin; Hontecillas, Raquel (Public Library of Science, 2012-02-21)Background: Inflammatory bowel disease (IBD) therapies are modestly successful and associated with significant side effects. Thus, the investigation of novel approaches to prevent colitis is important. Probiotic bacteria can produce immunoregulatory metabolites in vitro such as conjugated linoleic acid (CLA), a polyunsaturated fatty acid with potent anti-inflammatory effects. This study aimed to investigate the cellular and molecular mechanisms underlying the anti-inflammatory efficacy of probiotic bacteria using a mouse model of colitis. Methodology/Principal Findings: The immune modulatory mechanisms of VSL#3 probiotic bacteria and CLA were investigated in a mouse model of DSS colitis. Colonic specimens were collected for histopathology, gene expression and flow cytometry analyses. Immune cell subsets in the mesenteric lymph nodes (MLN), spleen, blood and colonic lamina propria cells were phenotypically and functionally characterized. Fecal samples and colonic contents were collected to determine the effect of VSL#3 and CLA on gut microbial diversity and CLA production. CLA and VSL#3 treatment ameliorated colitis and decreased colonic bacterial diversity, a finding that correlated with decreased gut pathology. Colonic CLA concentrations were increased in response to probiotic bacterial treatment, but without systemic distribution in blood. VSL#3 and CLA decreased macrophage accumulation in the MLN of mice with DSS colitis. The loss of PPAR γ in myeloid cells abrogated the protective effect of probiotic bacteria and CLA in mice with DSS colitis. Conclusions/Significance: Probiotic bacteria modulate gut microbial diversity and favor local production of CLA in the colon that targets myeloid cell PPAR γ to suppress colitis.
- The Role of Peroxisome Proliferator-Activated Receptor γ in Immune Responses to Enteroaggregative Escherichia coli InfectionPhilipson, Casandra W.; Bassaganya-Riera, Josep; Viladomiu, Monica; Pedragosa, Mireia; Guerrant, Richard L.; Roche, James K.; Hontecillas, Raquel (Public Library of Science, 2013-02-28)Background: Enteroaggregative Escherichia coli (EAEC) is recognized as an emerging cause of persistent diarrhea and enteric disease worldwide. Mucosal immunity towards EAEC infections is incompletely understood due in part to the lack of appropriate animal models. This study presents a new mouse model and investigates the role of peroxisome proliferator-activated receptor gamma (PPARγ) in the modulation of host responses to EAEC in nourished and malnourished mice. Methods/Principal Findings: Wild-type and T cell-specific PPARγ null C57BL/6 mice were fed protein-deficient diets at weaning and challenged with 5×109cfu EAEC strain JM221 to measure colonic gene expression and immune responses to EAEC. Antigen-specific responses to E. coli antigens were measured in nourished and malnourished mice following infection and demonstrated the immunosuppressive effects of malnutrition at the cellular level. At the molecular level, both pharmacological blockade and deletion of PPARγ in T cells resulted in upregulation of TGF-β, IL-6, IL-17 and anti-microbial peptides, enhanced Th17 responses, fewer colonic lesions, faster clearance of EAEC, and improved recovery. The beneficial effects of PPARγ blockade on weight loss and EAEC clearance were abrogated by neutralizing IL-17 in vivo. Conclusions: Our studies provide in vivo evidence supporting the beneficial role of mucosal innate and effector T cell responses on EAEC burden and suggest pharmacological blockade of PPARγ as a novel therapeutic intervention for EAEC infection.
- Systems Modeling of Interactions between Mucosal Immunity and the Gut Microbiome during Clostridium difficile InfectionLeber, Andrew; Viladomiu, Monica; Hontecillas, Raquel; Abedi, Vida; Philipson, Casandra; Hoops, Stefan; Howard, Brad; Bassaganya-Riera, Josep (PLOS, 2015-07-31)Clostridium difficile infections are associated with the use of broad-spectrum antibiotics and result in an exuberant inflammatory response, leading to nosocomial diarrhea, colitis and even death. To better understand the dynamics of mucosal immunity during C. difficile infection from initiation through expansion to resolution, we built a computational model of the mucosal immune response to the bacterium. The model was calibrated using data from a mouse model of C. difficile infection. The model demonstrates a crucial role of T helper 17 (Th17) effector responses in the colonic lamina propria and luminal commensal bacteria populations in the clearance of C. difficile and colonic pathology, whereas regulatory T (Treg) cells responses are associated with the recovery phase. In addition, the production of anti-microbial peptides by inflamed epithelial cells and activated neutrophils in response to C. difficile infection inhibit the re-growth of beneficial commensal bacterial species. Computational simulations suggest that the removal of neutrophil and epithelial cell derived anti-microbial inhibitions, separately and together, on commensal bacterial regrowth promote recovery and minimize colonic inflammatory pathology. Simulation results predict a decrease in colonic inflammatory markers, such as neutrophilic influx and Th17 cells in the colonic lamina propria, and length of infection with accelerated commensal bacteria re-growth through altered anti-microbial inhibition. Computational modeling provides novel insights on the therapeutic value of repopulating the colonic microbiome and inducing regulatory mucosal immune responses during C. difficile infection. Thus, modeling mucosal immunity-gut microbiota interactions has the potential to guide the development of targeted fecal transplantation therapies in the context of precision medicine interventions.
- Systems Modeling of Molecular Mechanisms Controlling Cytokine-driven CD4+ T Cell Differentiation and Phenotype PlasticityCarbo, Adria; Hontecillas, Raquel; Kronsteiner, Barbara; Viladomiu, Monica; Pedragosa, Mireia; Lu, Pinyl; Philipson, Casandra W.; Hoops, Stefan; Marathe, Madhav; Eubank, Stephen; Bisset, Keith R.; Wendelsdorf, Katherine; Jarrah, Abdul Salam; Mei, Yongguo; Bassaganya-Riera, Josep (Public Library of Science, 2013-04-04)Differentiation of CD4+ T cells into effector or regulatory phenotypes is tightly controlled by the cytokine milieu, complex intracellular signaling networks and numerous transcriptional regulators. We combined experimental approaches and computational modeling to investigate the mechanisms controlling differentiation and plasticity of CD4+ T cells in the gut of mice. Our computational model encompasses the major intracellular pathways involved in CD4+ T cell differentiation into T helper 1 (Th1), Th2, Th17 and induced regulatory T cells (iTreg). Our modeling efforts predicted a critical role for peroxisome proliferator-activated receptor gamma (PPARc) in modulating plasticity between Th17 and iTreg cells. PPARc regulates differentiation, activation and cytokine production, thereby controlling the induction of effector and regulatory responses, and is a promising therapeutic target for dysregulated immune responses and inflammation. Our modeling efforts predict that following PPARc activation, Th17 cells undergo phenotype switch and become iTreg cells. This prediction was validated by results of adoptive transfer studies showing an increase of colonic iTreg and a decrease of Th17 cells in the gut mucosa of mice with colitis following pharmacological activation of PPARc. Deletion of PPARc in CD4+ T cells impaired mucosal iTreg and enhanced colitogenic Th17 responses in mice with CD4+ T cell-induced colitis. Thus, for the first time we provide novel molecular evidence in vivo demonstrating that PPARc in addition to regulating CD4+ T cell differentiation also plays a major role controlling Th17 and iTreg plasticity in the gut mucosa.