Browsing by Author "Villamagna, Amy M."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Adapting Human Well-being Frameworks for Ecosystem Service Assessments across Diverse LandscapesVillamagna, Amy M.; Giesecke, C. (Resilience Alliance, 2014)There is broad support for the notion that ecosystem services influence human well-being (HWB), however, the means to measure such an effect are elusive. Measures of HWB are commonly used within the fields of psychology, economics, and international development, but thus far have not been integrated fully into ecosystem service assessments. We examine the multidimensional nature of HWB and discuss the need for a robust framework that captures its complex relationship with ecosystem services. We review several well-known HWB indices and describe the adaptation of two frameworks-the Economist Intelligence Unit's Quality of Life Index and the Sustainable Livelihoods Framework-to evaluate county-level HWB within the Albemarle-Pamlico Basin (Virginia and North Carolina, USA) using a stakeholder-engaged approach. We present maps of HWB that illustrate the results of both frameworks, discuss the feedback from stakeholders that guided indicator and data selection, and examine the observed differences in HWB throughout the basin. We conclude with suggestions for enhancing the role of ecosystem services in HWB indices.
- The Capacity to Endure: Following Nature’s LeadFogarty, Frank; Villamagna, Amy M.; Whitley, Allen; Pippins, Kelly (MDPI, 2013-06-06)Many businesses today are striving to improve their environmental sustainability for a variety of reasons, ranging from consumer demand for greener products to potential cost-savings. For many business decision-makers who lack formal environmental training, the process of identifying facets of their organization that can be improved is unclear and challenging. Inspired by the fields of biomimicry, industrial ecology and organizational ecology, this paper draws on the inherent capacity to endure (CTE) of the natural world and recognizes that ecosystem function can be used as a technical advisor to guide business sustainability. We identified major attributes of ecosystems that both contribute to their CTE and can be easily translated into applications for the business world. Each of these attributes (fitness, functional redundancy, keystone species, waste and efficiency) and their applications are discussed at length. While further work is needed to evaluate their effectiveness and appropriateness for individual firms, we hope they can serve as a starting point for businesses seeking to improve their environmental sustainability.
- Inequity in ecosystem service delivery: socioeconomic gaps in the public-private conservation networkVillamagna, Amy M.; Mogollón, Beatriz; Angermeier, Paul L. (The Resilience Alliance, 2017)Conservation areas, both public and private, are critical tools to protect biodiversity and deliver important ecosystem services (ES) to society. Although societal benefits from such ES are increasingly used to promote public support of conservation, the number of beneficiaries, their identity, and the magnitude of benefits are largely unknown for the vast majority of conservation areas in the United States public-private conservation network. The location of conservation areas in relation to people strongly influences the direction and magnitude of ES flows as well as the identity of beneficiaries. We analyzed benefit zones, the areas to which selected ES could be conveyed to beneficiaries, to assess who benefits from a typical conservation network. Better knowledge of ES flows and beneficiaries will help land conservationists make a stronger case for the broad collateral benefits of conservation and help to address issues of social-environmental justice. To evaluate who benefits the most from the current public-private conservation network, we delineated the benefit zones for local ES (within 16 km) that are conveyed along hydrological paths from public (federal and state) and private (easements) conservation lands in the states of North Carolina and Virginia, USA. We also discuss the challenges and demonstrate an approach for delineating nonhydrological benefits that are passively conveyed to beneficiaries. We mapped and compared the geographic distribution of benefit zones within and among conservation area types. We further compared beneficiary demographics across benefit zones of the conservation area types and found that hydrological benefit zones of federal protected areas encompass disproportionately fewer minority beneficiaries compared to statewide demographic patterns. In contrast, benefit zones of state protected areas and private easements encompassed a much greater proportion of minority beneficiaries (~22–25%). Benefit zones associated with private conservation lands included beneficiaries of significantly greater household income than benefit zones of other types of conservation areas. Our analysis of ES flows revealed significant socioeconomic gaps in how the current public-private conservation network benefits the public. These gaps warrant consideration in regional conservation plans and suggest that private conservation initiatives may be best suited for responding to the equity challenge. Enhancing the ecosystem benefits and the equity of benefit delivery from private conservation networks could build public and political support for long-term conservation strategies and ultimately enhance conservation efficacy.
- A New Modeling Approach To Prioritize Riparian Restoration To Reduce Sediment Loading in Two Virginia River BasinsScott, Lisa N.; Villamagna, Amy M.; Angermeier, Paul L. (2018-10)Human impact, particularly land cover changes (e.g., agriculture, construction) increase erosion and sediment loading into streams. Benthic species are negatively affected by silt deposition that coats and embeds stream substrate. Given that riparian buffers are effective sediment filters, riparian restoration is increasingly implemented by conservation groups to protect stream habitats. Limited funding and a multitude of impaired streams warrant the need for cost-effective prioritization of potential restoration actions. We created a decision-support framework for conservation agencies and aquatic resource managers to prioritize riparian restoration efforts. Our framework integrates GIS data and field surveys into a statistical model to predict instream silt from estimates of upland soil loss and riparian filtration capacity. We focus specifically on prioritizing sites in upper sections of the Roanoke and Nottoway river basins (Virginia, US) based on observed records of Roanoke logperch (Percina rex), an imperiled sediment-sensitive species. Our statistical approach examines soil characteristics, land cover, precipitation, topography, and annual soil loss estimates from the empirically derived Revised Universal Soil Loss Equation, combined with land cover-based riparian filtration capacity as potential stream habitat predictors. We found riparian filtration capacity to be a significant predictor of silt cover, while precipitation was a significant predictor of embeddedness. Spatial scale was also a factor, in that spatial variance in silt cover and embeddedness was more accurately predicted at smaller spatial extents. Ultimately, our model can be used as a prioritization tool for mitigating high siltation areas, or for protecting low soil erosion areas.