Browsing by Author "Vinayagam, Radha Krishnan"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Sentiment and Topic AnalysisBartolome, Abigail; Bock, Matthew; Vinayagam, Radha Krishnan; Krishnamurthy, Rahul (Virginia Tech, 2017-05-03)The IDEAL (Integrated Digital Event Archiving and Library) and Global Event and Trend Archive Research (GETAR) projects have collected over 1.5 billion tweets, and webpages from social media and the World Wide Web and indexed them to be easily retrieved and analyzed. This gives researchers an extensive library of documents that reflect the interests and sentiments of the public in reaction to an event. By applying topic analysis to collections of tweets, researchers can learn the topics of most interest or concern to the general public. Adding a layer of sentiment analysis to those topics will illustrate how the public felt in relation to the topics that were found. The Sentiment and Topic Analysis team has designed a system that joins topic analysis and sentiment analysis for researchers who are interested in learning more about public reaction to global events. The tool runs topic analysis on a collection of tweets, and the user can select a topic of interest and assess the sentiments with regard to that topic (i.e., positive vs. negative). This submission covers the background, requirements, design and implementation of our contributions to this project. Furthermore, we include data, scripts, source code, a user manual, and a developer manual to assist in any future work.
- Topic Analysis project in CS5604, Spring 2016: Extracting Topics from Tweets and Webpages for IDEALMehta, Sneha; Vinayagam, Radha Krishnan (2016-05-04)The IDEAL (Integrated Digital Event Archiving and Library) project aims to ingest tweets and web-based content from social media and the web and index it for retrieval. One of the required milestones for a graduate-level course CS5604 on Information Storage and Retrieval is to implement a state-of-the-art information retrieval and analysis system in support of the IDEAL project. The overall objective of this project is to build a robust Information Retrieval system on top of Solr, a general purpose open-source search engine. To enable the search and retrieval process we use various approaches including Latent Dirichlet Allocation, Named-Entity Recognition, Clustering, Classification, Social Network Analysis and Front-end interface for search. The project has been divided into various segments and our team has been assigned Topic Analysis. A topic in this context is a set of words that can be used to represent a document. The output of our team will be a well-defined set of topics that describe each document in the collections we have. The topics will facilitate a facet based search in the frontend search interface. This submission includes the project report, final presentation, LDA code, test datasets, and results. In the project report,we introduce the relevant background, design & implementation, and the requirements to make our part functional. The developer’s manual describes our approach in detail. Walk-through tutorials for related software packages have been included in the user’s manual. Finally, we also provide exhaustive results and detailed evaluation methodologies for the topic quality.