Browsing by Author "Volos, Haris I."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Cognitive Radio Engine Design for Link AdaptationVolos, Haris I. (Virginia Tech, 2010-09-07)In this work, we make contributions in three main areas of Cognitive Engine (CE) design for link adaptation. The three areas are CE design, CE training, and the impact of imperfect observations in the operation of the CE. First, we present a CE design for link adaptation and apply it to a system which can adapt its use of multiple antennas in addition to modulation and coding. Our design moves forward the state of the art in several ways while having a simple structure. Specifically, the CE only needs to observe the number of successes and failures associated with each set of channel conditions and communication method. From these two numbers, the CE can derive all of its functionality: estimate confidence intervals, balance exploration vs. exploitation, and utilize prior knowledge such as communication fundamentals. Finally, the CE learns the radio abilities independently of the operation objectives. Thus, if an objective changes, information regarding the radio's abilities is not lost. Second, we provide an overview of CE training, and we analytically estimate the number of trials needed to conclusively find the best performing method in a list of methods sorted by their potential performance. Furthermore, we propose the Robust Training Algorithm (RoTA) for applications where stable performance is of topmost importance. Finally, we test four key training techniques and identify and explain the three main factors that affect performance during training. Third, we assess the impact of the estimation noise on the performance of a CE. Furthermore, we derive the effect of estimation delay, in terms of the correlation between the observed SNR and the true SNR. We evaluate the effect of estimation noise and delay to the operation of the CE individually and jointly. It is found that impairments on learning make the CE more conservative in its choices leading to submaximal performance. It is found that the CE should learn using the impaired observations, if the observations are highly correlated with the actual conditions. Otherwise, it is better for the CE to learn with knowledge of the ideal conditions, if that knowledge is available.
- Design and Implementation of a MAC protocol for Wireless Distributed ComputingBera, Soumava (Virginia Tech, 2011-06-20)The idea of wireless distributed computing (WDC) is rapidly gaining recognition owing to its promising potential in military, public safety and commercial applications. This concept basically entails distributing a computationally intensive task that one radio device is assigned, among its neighboring peer radio devices. The added processing power of multiple radios can be harnessed to significantly reduce the time consumed in obtaining the results of the original complex task. Since the idea of wireless distributed computing depends on a radio device forming a network with its peers, it is imperative and necessary to have a medium access control (MAC) protocol for such networks which is capable of scheduling channel access by multiple radios in the network, ensuring reliable data transfer, incorporating rate adaptation as well as handling link failures. The thesis presented here elaborates the design and implementation of such a MAC protocol for WDC employed in a practical network of radio devices configurable through software. It also brings to light the design and implementation constraints and challenges faced in this endeavor and puts forward viable solutions.
- Distributed Localization for Wireless Distributed Networks in Indoor EnvironmentsMendoza, Hermie P. (Virginia Tech, 2011-06-28)Positioning systems enable location-awareness for mobile devices, computers, and even tactical radios. From the collected location information, location-based services can be realized. One type of positioning system is based on location fingerprints. Unlike the conventional positioning techniques of time of or time delay of arrival (TOA/TDOA) or even angle of arrival (AOA), fingerprinting associates unique characteristics such as received signal strength (RSS) that differentiates a location from another location. The location-dependent characteristics then can be used to infer a user's location. Furthermore, fingerprinting requires no specialized hardware because of its reliance on an existing communications infrastructure. In estimating a user's position, fingerprint-based positioning systems are centrally calculated on a mobile computer using either a Euclidean distance algorithm, Bayesian statistics, or neural networks. With large service areas and, subsequently, large radio maps, one mobile computer may not have the adequate resources to locally compute a user's position. Wireless distributed computing provides a means for the mobile computer to meet the location-based service requirements and increase its network lifetime. This thesis develops distributed localization algorithms to be used in an indoor fingerprint-based positioning system. Fingerprint calculations are not computed on a single device, but rather on a wireless distributed computing network on Virginia Tech's Cognitive Radio Network Testbed (CORNET).
- Ultra Wideband Ranging and Link Budget Design for Naval Crane ApplicationsVolos, Haris I. (Virginia Tech, 2006-06-01)In this thesis a UWB-based ranging scheme is designed, simulated, implemented and tested. This system was designed to address the problem of safely unloading cargo crates to ships in the open seas. UWB antennas are placed on the four corners of the cargo crate, providing the information needed to a ranging/positioning algorithm that estimates the orientation and distance of the ship's deck from the crate. Furthermore, the system is successfully tested in a 1/24 scale demonstration. In addition to the UWB ranging application, this thesis evaluates an already proposed modification to the traditional narrowband link budget based on the Friis transmission formula. The proposed modification replaces frequency-domain parameters with time-domain values to handle the wide bandwidth of UWB systems. The proposed approach is shown via measurements to be much more accurate than the traditional technique.