Browsing by Author "Walker, Eric L."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- An Extended Calibration and Validation of a Slotted-Wall Transonic Wall-Interference Correction Method for the National Transonic FacilityBailey, Matthew Marlando (Virginia Tech, 2019-11-26)Correcting wind tunnel data for wall interference is a critical part of relating the acquired data to a free-air condition. Accurately determining and correcting for the interference caused by the presence of boundaries in wind tunnels can be difficult especially for facilities employing ventilated boundaries. In this work, three varying levels of ventilation at the National Transonic Facility (NTF) were modeled and calibrated with a general slotted wall (GSW) linear boundary condition to validate the computational model used to determine wall interference corrections. Free-air lift, drag, and pitching moment coefficient predictions were compared for a range of lift production and Mach conditions to determine the uncertainty in the corrections process and the expected domain of applicability. Exploiting a previously designed statistical validation method, this effort accomplishes the extension of a calibration and validation for a boundary pressure wall interference corrections method. The foundational calibration and validation work was based on blockage interference only, while this present work extends the assessment of the method to encompass blockage and lift interference production. The validation method involves the establishment of independent cases that are then compared to rigorously determine the degree to which the correction method can converge free-air solutions for differing interference fields. The process involved first establishing an empty-tunnel calibration to gain both a centerline Mach profile of the facility at various ventilation settings, and to gain a baseline wall pressure signature undisturbed by a test article. The wall boundary condition parameters were then calibrated with a blockage and lift interference producing test article, and final corrected performance coefficients were compared for varying test section ventilated configurations to validate the corrections process and assess its domain of applicability. During the validation process discrimination between homogeneous and discrete implementations of the boundary condition was accomplished and final results indicated comparative strength in the discrete implementation's ability to capture experimental flow physics. Final results indicate that a discrete implementation of the General Slotted Wall boundary condition is effective in significantly reducing variations caused by differing interference fields. Corrections performed with the discrete implementation of the boundary condition collapse differing measurements of lift coefficient to within 0.0027, drag coefficient to within 0.0002, and pitching moment coefficient to within 0.0020.
- Model Robust Calibration: Method and Application to Electronically-Scanned Pressure TransducersWalker, Eric L.; Starnes, B. Alden; Birch, Jeffrey B.; Mays, James E. (American Institute of Aeronautics and Astronautics, 2010)This article presents the application of a recently developed statistical regression method to the controlled instrument calibration problem. The statistical method of Model Robust Regression (MRR), developed byMays, Birch, and Starnes, is shown to improve instrument calibration by reducing the reliance of the calibration on a predetermined parametric (e.g. polynomial, exponential, logarithmic) model. This is accomplished by allowing fits from the predetermined parametric model to be augmented by a certain portion of a fit to the residuals from the initial regression using a nonparametric (locally parametric) regression technique. The method is demonstrated for the absolute scale calibration of silicon-based pressure transducers.
- Statistical Calibration and Validation of a Homogeneous Ventilated Wall-Interference Correction Method for the National Transonic FacilityWalker, Eric L. (Virginia Tech, 2005-10-07)Wind tunnel experiments will continue to be a primary source of validation data for many types of mathematical and computational models in the aerospace industry. The increased emphasis on accuracy of data acquired from these facilities requires understanding of the uncertainty of not only the measurement data but also any correction applied to the data. One of the largest and most critical corrections made to these data is due to wall interference. In an effort to understand the accuracy and suitability of these corrections, a statistical validation process for wall interference correction methods has been developed. This process is based on the use of independent cases which, after correction, are expected to produce the same result. Comparison of these independent cases with respect to the uncertainty in the correction process establishes a domain of applicability based on the capability of the method to provide reasonable corrections with respect to customer accuracy requirements. The statistical validation method was applied to the version of the Transonic Wall Interference Correction System (TWICS) recently implemented in the National Transonic Facility at NASA Langley Research Center. The TWICS code generates corrections for solid and slotted wall interference in the model pitch plane based on boundary pressure measurements. Before validation could be performed on this method, it was necessary to calibrate the ventilated wall boundary condition parameters. Discrimination comparisons are used to determine the most representative of three linear boundary condition models which have historically been used to represent longitudinally slotted test section walls. Of the three linear boundary condition models implemented for ventilated walls, the general slotted wall model was the most representative of the data. The TWICS code using the calibrated general slotted wall model was found to be valid to within the process uncertainty for test section Mach numbers less than or equal to 0.60. The scatter among the mean corrected results of the bodies of revolution validation cases was within one count of drag on a typical transport aircraft configuration for Mach numbers at or below 0.80 and two counts of drag for Mach numbers at or below 0.90.