Browsing by Author "Walters, Annika W."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Simple statistical models can be sufficient for testing hypotheses with population time-series dataWenger, Seth J.; Stowe, Edward S.; Gido, Keith B.; Freeman, Mary C.; Kanno, Yoichiro; Franssen, Nathan R.; Olden, Julian D.; Poff, N. LeRoy; Walters, Annika W.; Bumpers, Phillip M.; Mims, Meryl C.; Hooten, Mevin B.; Lu, Xinyi (Wiley, 2022-09)Time-series data offer wide-ranging opportunities to test hypotheses about the physical and biological factors that influence species abundances. Although sophisticated models have been developed and applied to analyze abundance time series, they require information about species detectability that is often unavailable. We propose that in many cases, simpler models are adequate for testing hypotheses. We consider three relatively simple regression models for time series, using simulated and empirical (fish and mammal) datasets. Model A is a conventional generalized linear model of abundance, model B adds a temporal autoregressive term, and model C uses an estimate of population growth rate as a response variable, with the option of including a term for density dependence. All models can be fit using Bayesian and non-Bayesian methods. Simulation results demonstrated that model C tended to have greater support for long-lived, lower-fecundity organisms (K life-history strategists), while model A, the simplest, tended to be supported for shorter-lived, high-fecundity organisms (r life-history strategists). Analysis of real-world fish and mammal datasets found that models A, B, and C each enjoyed support for at least some species, but sometimes yielded different insights. In particular, model C indicated effects of predictor variables that were not evident in analyses with models A and B. Bayesian and frequentist models yielded similar parameter estimates and performance. We conclude that relatively simple models are useful for testing hypotheses about the factors that influence abundance in time-series data, and can be appropriate choices for datasets that lack the information needed to fit more complicated models. When feasible, we advise fitting datasets with multiple models because they can provide complementary information.
- Stream Vulnerability to Widespread and Emergent Stressors: A Focus on Unconventional Oil and GasEntrekin, Sally A.; Maloney, Kelly O.; Kapo, Katherine E.; Walters, Annika W.; Evans-White, Michelle A.; Klemow, Kenneth M. (PLOS, 2015-09-23)Multiple stressors threaten stream physical and biological quality, including elevated nutrients and other contaminants, riparian and in-stream habitat degradation and altered natural flow regime. Unconventional oil and gas (UOG) development is one emerging stressor that spans the U.S. UOG development could alter stream sedimentation, riparian extent and composition, in-stream flow, and water quality. We developed indices to describe the watershed sensitivity and exposure to natural and anthropogenic disturbances and computed a vulnerability index from these two scores across stream catchments in six productive shale plays. We predicted that catchment vulnerability scores would vary across plays due to climatic, geologic and anthropogenic differences. Across-shale averages supported this prediction revealing differences in catchment sensitivity, exposure, and vulnerability scores that resulted from different natural and anthropogenic environmental conditions. For example, semi-arid Western shale play catchments (Mowry, Hilliard, and Bakken) tended to be more sensitive to stressors due to low annual average precipitation and extensive grassland. Catchments in the Barnett and Marcellus-Utica were naturally sensitive from more erosive soils and steeper catchment slopes, but these catchments also experienced areas with greater UOG densities and urbanization. Our analysis suggested Fayetteville and Barnett catchments were vulnerable due to existing anthropogenic exposure. However, all shale plays had catchments that spanned a wide vulnerability gradient. Our results identify vulnerable catchments that can help prioritize stream protection and monitoring efforts. Resource managers can also use these findings to guide local development activities to help reduce possible environmental effects.