Browsing by Author "Wang, Chun"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Empirical Analysis of User Passwords across Online ServicesWang, Chun (Virginia Tech, 2018-06-05)Leaked passwords from data breaches can pose a serious threat if users reuse or slightly modify the passwords for other services. With more and more online services getting breached today, there is still a lack of large-scale quantitative understanding of the risks of password reuse and modification. In this project, we perform the first large-scale empirical analysis of password reuse and modification patterns using a ground-truth dataset of 28.8 million users and their 61.5 million passwords in 107 services over 8 years. We find that password reuse and modification is a very common behavior (observed on 52% of the users). More surprisingly, sensitive online services such as shopping websites and email services received the most reused and modified passwords. We also observe that users would still reuse the already-leaked passwords for other online services for years after the initial data breach. Finally, to quantify the security risks, we develop a new training-based guessing algorithm. Extensive evaluations show that more than 16 million password pairs (30% of the modified passwords and all the reused passwords) can be cracked within just 10 guesses. We argue that more proactive mechanisms are needed to protect user accounts after major data breaches.
- Measuring the Insecurity of Mobile Deep Links of AndroidLui, Fang; Wang, Chun; Pico, Andres; Yao, Danfeng (Daphne); Wang, Gang Alan (USENIX, 2017-08)Mobile deep links are URIs that point to specific locations within apps, which are instrumental to web-to-app communications. Existing “scheme URLs” are known to have hijacking vulnerabilities where one app can freely register another app’s schemes to hijack the communication. Recently, Android introduced two new methods “App links” and “Intent URLs” which were designed with security features, to replace scheme URLs. While the new mechanisms are secure in theory, little is known about how effective they are in practice. In this paper, we conduct the first empirical measurement on various mobile deep links across apps and websites. Our analysis is based on the deep links extracted from two snapshots of 160,000+ top Android apps from Google Play (2014 and 2016), and 1 million webpages from Alexa top domains. We find that the new linking methods (particularly App links) not only failed to deliver the security benefits as designed, but significantly worsen the situation. First, App links apply link verification to prevent hijacking. However, only 194 apps (2.2% out of 8,878 apps with App links) can pass the verification due to incorrect (or no) implementations. Second, we identify a new vulnerability in App link’s preference setting, which allows a malicious app to intercept arbitrary HTTPS URLs in the browser without raising any alerts. Third, we identify more hijacking cases on App links than existing scheme URLs among both apps and websites. Many of them are targeting popular sites such as online social networks. Finally, Intent URLs have little impact in mitigating hijacking risks due to a low adoption rate on the web.