Browsing by Author "Wang, Dong"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
- The Application of Thin Film Ionic Self-assembled Multilayer (ISAM) Nanostructures in Electromechanical Bending Actuators and Micro-fabricated Gas Chromatography (uGC) DevicesWang, Dong (Virginia Tech, 2015-01-14)Ionic self-assembled multilayer (ISAM) thin film nanostructures, including highly porous and conductive gold nanoparticles (GNP), and highly porous and thermally stable silica nanoparticles (SNP), were fabricated via the layer-by-layer (LbL) self-assembly technique. Their application in ionic polymer-metal composite (IPMC) electromechanical bending actuators and microfabricated gas chromatography (microGC) devices were investigated and significant performance improvements of these devices were achieved. IPMC bending actuators, consisting of an ionic electroactive polymer (iEAP) membrane as backbone, ionic liquids (IL) as electrolyte, and ISAM GNP thin film as porous electrode, were fabricated and investigated. The influences of humidity, conductive network composite (CNC), and IL uptake on the bending performance were examined and discussed. An equivalent circuit model to simulate both the electrical and mechanical responses was also proposed and experimentally verified. Moreover, IPMC actuators made from other newly synthesized iEAP membranes were fabricated and tested. Some of them showed promising performance that was comparable or even better as compared to the ones made from Nafion. LbL fabricated ISAM SNPs thin film coatings were also applied in the microGC devices including micro fabricated thermal preconcentrators (microTPC) and separation columns (microSC) as adsorbent and stationary phase materials, respectively. New fabrication approaches were developed to selectively coat uniform conformal ISAM SNP coatings in these devices with different 3D microstructures. Thus, functionalized microTPCs and microSCs showed good performance, which can be further improved by using the ISAM SNPs coating as a nanotemplate for modifying additional polymer adsorbents or as the anchor sites for incorporating functional molecules for targeting detection.
- Binder Film Thickness Effect on Aggregate Contact BehaviorWang, Dong (Virginia Tech, 2007-08-02)This study presents a study on the binder film thickness effect on aggregate contact behavior. As a three-phase material composed of aggregates, asphalt binder and air voids, asphalt mixture could be considered as a visco-elastic material in the low stress level. Since the behavior of the mixture depends largely on the relationship of different components, a well developed contact model for micro-structural modeling is very important for understanding the deformation mechanism of the mixture. In this study, the contact modeling of asphalt mixture was reviewed and the numerical tools used to investigate the micromechanical behavior of asphalt mixture will also be introduced. By using the cabinet x-ray tomography system, the displacement and resistant force of a system of particles bonded by a thin layer binder are measured and recorded. Then, the results are compared with the theoretical solutions of a normal compliance model for a system comprised of two elastic particles bonded by a thin layer of visco-elastic binder. A closed-form time-dependent relationship between the contact forces and the relative particle/binder movements was developed. A reasonable agreement between experiments results and model predicted results is obtained combined with parametric analysis.
- Elastic Nanofibrous Membranes for Medical and Personal Protection Applications: Manufacturing, Anti-COVID-19, and Anti-Colistin Resistant Bacteria EvaluationAlshabanah, Latifah Abdullah; Omran, Nada; Elwakil, Bassma H.; Hamed, Moaaz T.; Abdallah, Salwa M.; Al-Mutabagani, Laila A.; Wang, Dong; Liu, Qiongzhen; Shehata, Nader; Hassanin, Ahmed H.; Hagar, Mohamed (MDPI, 2021-11-18)Herein, in the present work two series of thermoplastic polyurethane (TPU) nanofibers were manufactured using the electrospinning techniques with ZnO and CuO nanoparticles for a potential use as an elastic functional layer in antimicrobial applications. Percentages of 0%, 2 wt%, and 4 wt% of the nanoparticles were used. The morphological characterization of the electrospun TPU and TPU/NPs composites nanofibers were observed by using scanning electron microscopy to show the average fiber diameter and it was in the range of 90–150 nm with a significant impact of the nanoparticle type. Mechanical characterization showed that TPU nanofiber membranes exhibit excellent mechanical properties with ultra-high elastic properties. Elongation at break reached up to 92.5%. The assessment of the developed nanofiber membranes for medical and personal protection applications was done against various colistin resistant bacterial strains and the results showed an increment activity by increasing the metal oxide concentration up to 83% reduction rate by using TPU/ZnO 4% nanofibers against K. pneumoniae strain 10. The bacterial growth was completely eradicated after 8 and 16 h incubation with TPU/ZnO and TPU/CuO nanofibers, respectively. The nanofibers SEM study reveals the adsorption of the bacterial cells on the metal oxides nanofibers surface which led to cell lysis and releasing of their content. Finally, in vitro study against Spike S-protein from SARS-CoV-2 was also evaluated to investigate the potent effectiveness of the proposed nanofibers in the virus deactivation. The results showed that the metal oxide concentration is an effective factor in the antiviral activity due to the observed pattern of increasing the antibacterial and antiviral activity by increasing the metal oxide concentration; however, TPU/ZnO nanofibers showed a potent antiviral activity in relation to TPU/CuO.
- Image-based Vehicle LocalizationWang, Dong (Virginia Tech, 2019-07-01)Localization is a crucial topic in navigation, especially in autonomous vehicles navigation. It is usually done by using a global positioning system (GPS) sensor. Even though there have been many studies of vehicle localization in recent years, most of them combine GPS sensor with other sensors to get a more accurate result [1]. In this thesis, we propose a novel image-based vehicle localization by utilizing vision sensor and computer vision techniques to extract vehicle surrounding text landmarks and to locate the vehicle position. Firstly, we explore the feasibility of image-based vehicle localization by using text landmark of a position to locate vehicle position. A text landmark model, a location matching algorithm and a basic localization model are proposed, which allow a vehicle to find the best matching location in the database by cross-checking the text landmarks from query image and reference location images. Secondly, we propose two more robust localization models by applying vehicle moving distance and heading direction data as part of inputs, which significantly improve the localization accuracy. Finally, we simulate an experiment to evaluate our three different localization models and further prove the robustness of our model through experimental results.
- Imidazole-containing triblock copolymers with a synergy of ether and imidazolium sitesJangu, Chainika; Wang, Jing-Han Helen; Wang, Dong; Fahs, Gregory B.; Heflin, James R.; Moore, Robert Bowen; Colby, Ralph H.; Long, Timothy E. (The Royal Society of Chemistry, 2015-03-06)Reversible addition-fragmentation chain transfer (RAFT) polymerization enabled the synthesis of well-defined A-BC-A triblock copolymers containing a synergy of pendant ether and imidazolium sites. The soft central BC block comprises low Tg di(ethylene glycol) methyl ether methacrylate (DEGMEMA) and 1-(4-vinylbenzyl) methyl imidazolium units. External polystyrene blocks provide mechanical reinforcement within a nanoscale morphology. Dynamic mechanical analysis (DMA) of the A-BC-A triblock copolymers exhibited a plateau region, which suggested the formation of a microphase-separated morphology. Atomic force microscopy (AFM) and small angle X-ray scattering (SAXS) collectively probed the morphology of the A-BC-A triblock copolymers, revealing long-range order at the nanoscale dimensions. Dielectric relaxation spectroscopy (DRS) examined the ion-transport properties of ionomeric A-BC-A triblock copolymers and random copolymers with different compositions. The role of morphology was demonstrated with block copolymer nanoscale structures providing superior ionic conductivity and mechanical performance compared to random copolymers. Under a 4 V direct current (DC) applied voltage, electromechanical transducers derived from these triblock copolymer membranes with added ionic liquid showed superior actuation performance compared to a benchmark Nafion[registered sign] membrane, suggesting potential for ionic polymer device applications. This was attributed to optimum modulus, improved ionic conductivity, and microphase-separated morphology of triblock copolymers.
- Integration of Structural Health Monitoring and Asset ManagementWang, Linbing; Xue, Wenjing; Druta, Cristian; Wang, Dong (United States. Department of Transportation. Research and Innovative Technology Administration, 2012-12)The Virginia Center for Innovation and Transportation Research and Virginia Tech installed a structural health monitoring (SHM) system on a Virginia bridge. Using data from this SHM system as input, a procedure was developed to provide information on the lane occupancy, speed, classification and gross vehicle weight of heavy trucks. The resulting information is very useful for bridge management. The data also augments existing bridge WIM data collection sites in Virginia. The procedure could add functionality to other bridge SHM systems in Virginia. The system provides useful information on truck loading at low cost.
- Ion transport and storage of ionic liquids in ionic polymer conductor network compositesLiu, Yang; Liu, Sheng; Lin, Junhong; Wang, Dong; Jain, Vaibhav; Montazami, Reza; Heflin, James R.; Li, Jing; Madsen, Louis A.; Zhang, Q. M. (AIP Publishing, 2010-05-01)We investigate ion transport and storage of ionic liquids in ionic polymer conductor network composite electroactive devices. Specifically, we show that by combining the time domain electric and electromechanical responses, one can gain quantitative information on transport behavior of the two mobile ions in ionic liquids (i.e., cation and anion) in these electroactive devices. By employing a two carrier model, the total excess ions stored and strains generated by the cations and anions, and their transport times in the nanocomposites can be determined, which all depend critically on the morphologies of the conductor network nanocomposites. (C) 2010 American Institute of Physics. [doi:10.1063/1.3432664]
- A micro-scale method to associate the fatigue properties of asphalt binder, mastic and mixtureWang, Dong (Virginia Tech, 2011-02-25)The fatigue damage is one of the most common distresses observed on the asphalt concrete pavement. The initiation and propagation of the fatigue damage is a complicated phenomenon and very difficult to detect. In order to thoroughly understand the fatigue of asphalt concrete, the behaviors of the key components of asphalt concrete under cyclic loading are investigated respectively. A new experiment method is developed to test the performances of asphalt binder, mastic and mixture under cyclic loading, which provides a tool to unify the fatigue test method for both binding medium and asphalt mixture. Using the new fatigue test method, the effects of loading magnitude, temperature and loading rate to the performance of the asphalt binder under cyclic loading are estimated. Mastic and mixture specimens are prepared by adding fillers and controlled-size aggregates into the asphalt binder. The effects of filler content to the performance of mastic specimen are discussed. The differences between the test results of mastic and mixture are compared and analyzed. Incorporated with the new fatigue test, x-ray tomography system is used in this study to: 1. Analyze the structure change of the mastic specimen before and after the fatigue test. 2. Compare the void content differences between the mastic and mixture specimens. 3. Reconstruct the 3-D internal structures of mastic and mixture specimens to build up the digital specimens. The digital specimens are used in the fatigue simulation of the asphalt binder, mastic and mixture specimens based on the finite element method. The asphalt binder, filler and aggregate are treated as different materials. Damage parameter is introduced to model the degradation of elastic modulus of the asphalt binder caused by fatigue damage. Direct cyclic analysis available in ABAQUS is used to obtain the response of the material after large number of loading cycles. The basalt fibers are dispersed into the asphalt binder and mastic specimens, the effects of the basalt fiber to the performances of the binder and mastic at low temperature are analyzed using both experimental and FEM modeling methods.
- Review on Lithium-ion Battery PHM from the Perspective of Key PHM StepsKong, Jinzhen; Liu, Jie; Zhu, Jingzhe; Zhang, Xi; Tsui, Kwok-Leung; Peng, Zhike; Wang, Dong (2024-07-22)Prognostics and health management (PHM) has gotten considerable attention in the background of Industry 4.0. Battery PHM contributes to the reliable and safe operation of electric devices. Nevertheless, relevant reviews are still continuously updated over time. In this paper, we browsed extensive literature related to battery PHM from 2018 to 2023 and summarized advances in battery PHM field, including battery testing and public datasets, fault diagnosis and prediction methods, health status estimation and health management methods. The last topic includes state of health estimation methods, remaining useful life prediction methods and predictive maintenance methods. Each of these categories is introduced and discussed in details. Based on this survey, we accordingly discuss challenges left to battery PHM, and provide future research opportunities. This research systematically reviews recent research about battery PHM from the perspective of key PHM steps and provide some valuable prospects for researchers and practitioners.
- Thickness dependence of curvature, strain, and response time in ionic electroactive polymer actuators fabricated via layer-by-layer assemblyMontazami, Reza; Liu, Sheng; Liu, Yang; Wang, Dong; Zhang, Qiming; Heflin, James R. (American Institute of Physics, 2011-05-15)Ionic electroactive polymer (IEAP) actuators containing porous conductive network composites (CNCs) and ionic liquids can result in high strain and fast response times. Incorporation of spherical gold nanoparticles in the CNC enhances conductivity and porosity, while maintaining relatively small thickness. This leads to improved mechanical strain and bending curvature of the actuators. We have employed the layer-by-layer self-assembly technique to fabricate a CNC with enhanced curvature (0.43 mm(-1)) and large net intrinsic strain (6.1%). The results demonstrate that curvature and net strain of IEAP actuators due to motion of the anions increase linearly with the thickness of the CNC as a result of the increased volume in which the anions can be stored. In addition, after subtracting the curvature of a bare Nafion actuator without a CNC, it is found that the net intrinsic strain of the CNC layer is independent of thickness for the range of 20-80 nm, indicating that the entire CNC volume contributes equivalently to the actuator motion. Furthermore, the response time of the actuator due to anion motion is independent of CNC thickness, suggesting that traversal through the Nafion membrane is the limiting factor in the anion motion. (C) 2011 American Institute of Physics. [doi:10.1063/1.3590166]