Browsing by Author "Wang, Ji"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- Clustered Layout Word Cloud for User Generated Online ReviewsWang, Ji (Virginia Tech, 2012-11-20)User generated reviews, like those found on Yelp and Amazon, have become important reference material in casual decision making, like dining, shopping and entertainment. However, very large amounts of reviews make the review reading process time consuming. A text visualization can speed up the review reading process. In this thesis, we present the clustered layout word cloud -- a text visualization that quickens decision making based on user generated reviews. We used a natural language processing approach, called grammatical dependency parsing, to analyze user generated review content and create a semantic graph. A force-directed graph layout was applied to the graph to create the clustered layout word cloud. We conducted a two-task user study to compare the clustered layout word cloud to two alternative review reading techniques: random layout word cloud and normal block-text reviews. The results showed that the clustered layout word cloud offers faster task completion time and better user satisfaction than the other two alternative review reading techniques. [Permission email from J. Huang removed at his request. GMc March 11, 2014]
- GreenVis: Energy-Saving Color Schemes for Sequential Data Visualization on OLED DisplaysWang, Ji; Lin, Xiao; North, Christopher L. (Department of Computer Science, Virginia Polytechnic Institute & State University, 2012-03-01)The organic light emitting diode (OLED) display has recently become popular in the consumer electronics market. Compared with current LCD display technology, OLED is an emerging display technology that emits light by the pixels themselves and doesn’t need an external back light as the illumination source. In this paper, we offer an approach to reduce power consumption on OLED displays for sequential data visualization. First, we create a multi-objective optimization approach to find the most energy-saving color scheme for given visual perception difference levels. Second, we apply the model in two situations: pre-designed color schemes and auto generated color schemes. Third, our experiment results show that the energy-saving sequential color scheme can reduce power consumption by 17.2% for pre-designed color schemes. For auto-generated color schemes, it can save 21.9% of energy in comparison to the reference color scheme for sequential data.
- Hierarchical Assembly of Polymeric Nanofibers for Advanced Material ApplicationsWang, Ji (Virginia Tech, 2015-03-27)Polymer nanofibers are gaining importance due to their wide applicability in diverse fields, such as tissue engineering, fuel cells, photonics and sensors. For these applications, manufacturing aligned polymer nanofibers with precisely controlled morphology and well characterized mechanical properties in a bottom up configuration is essential. In this work, we developed an isodiametric design space for fabrication of aligned polystyrene nanofibers (diameter 60-800nm) using non-electrospinning Spinneret based Tunable Engineered Parameter (STEP) technique. By adjusting the processing parameters such as relative humidity, solvent volatility and polarity, porous polymer tubes are demonstrated having large specific surface areas. Combining STEP with sol-gel process, aligned inorganic nanofibers, such as Titanium Oxide (TiO2) with varied morphologies can be conveniently obtained. Mechanical properties of aligned polymer nanofibers (diameter from 50nm to several hundred nanometers) with fixed-fixed boundary conditions were estimated using a lateral force microscope (LFM). We find that the tension in the fiber caused during fabrication process scales with fiber diameter and it dominates fiber stiffness. Our studies demonstrate isotropic arrangement of polymer chains in the fibers and anisotropic arrangement in the necking region for fibers undergone deformation. Finally, this study demonstrates development of force sensors capable of measuring single cell forces, which scale with the fiber structural stiffness. The ability to measure cell forces during cell division, migration and apoptosis provides new insights in cell mechanobiology.
- Imperfect Monitoring in Multi-agent Opportunistic ChannelAccessWang, Ji (Virginia Tech, 2016-07-14)In recent years, extensive research has been devoted to opportunistically exploiting spectrum in a distributed cognitive radio network. In such a network, autonomous secondary users (SUs) compete with each other for better channels without instructions from a centralized authority or explicit coordination among SUs. Channel selection relies on channel occupancy information observed by SUs, including whether a channel is occupied by a PU or an SU. Therefore, the SUs' performance depends on the quality of the information. Current research in this area often assumes that the SUs can distinguish a channel occupied by a PU from one occupied by another SU. This can potentially be achieved using advanced signal detection techniques but not by simple energy detection. However, energy detection is currently the primary detection technique proposed for use in cognitive radio networks. This creates a need to design a channel selection strategy under the assumption that, when SUs observe channel availability, they cannot distinguish between a channel occupied by a PU and one occupied by another SU. Also, as energy detection is simpler and less costly than more advanced signal detection techniques, it is worth understanding the value associated with better channel occupancy information. The first part of this thesis investigates the impact of different types of imperfect information on the performance of secondary users (SUs) attempting to opportunistically exploit spectrum resources in a distributed manner in a channel environment where all the channels have the same PU duty cycle. We refer to this scenario as the homogeneous channel environment. We design channel selection strategies that leverage different levels of information about channel occupancy. We consider two sources of imperfect information: partial observability and sensing errors. Partial observability models SUs that are unable to distinguish the activity of PUs from SUs. Therefore, under the partial observability models, SUs can only observe whether a channel was occupied or not without further distinguishing it was occupied by a PU or by SUs. This type of imperfect information exists, as discussed above, when energy detection is adopted as the sensing technique. We propose two channel selection strategies under full and partial observability of channel activity and evaluate the performance of our proposed strategies through both theoretical and simulation results. We prove that both proposed strategies converge to a stable orthogonal channel allocation when the missed detection rate is zero. The simulation results validate the efficiency and robustness of our proposed strategies even with a non-zero probability of missed detection. The second part of this thesis focuses on computing the probability distribution of the number of successful users in a multi-channel random access scheme. This probability distribution is commonly encountered in distributed multi-channel communication systems. An algorithm to calculate this distribution based on a recursive expression was previously proposed. We propose a non-recursive algorithm that has a lower execution time than the one previously proposed in the literature. The third part of this thesis investigates secondary users (SUs) attempting to opportunistically exploit spectrum resources in a scenario where the channels have different duty cycles, which we refer to as the heterogeneous channel environment. In particular, we model the channel selection process as a one shot game. We prove the existence of a symmetric Nash equilibrium for the proposed static game and design a channel selection strategy that achieves this equilibrium. The simulation results compare the performance of the Nash equilibrium to two other strategies(the random and the proportional strategies) under different PU activity scenarios.
- Mitotic outcomes and errors in fibrous environmentsJana, Aniket; Sarkar, Apurba; Zhang, Haonan; Agashe, Atharva; Wang, Ji; Paul, Raja; Gov, Nir S.; DeLuca, Jennifer G.; Nain, Amrinder S. (National Academy of Sciences, 2023-02-27)During mitosis, cells round up and utilize the interphase adhesion sites within the fibrous extracellular matrix (ECM) as guidance cues to orient the mitotic spindles. Here, using suspended ECM-mimicking nanofiber networks, we explore mitotic outcomes and error distribution for various interphase cell shapes. Elongated cells attached to single fibers through two focal adhesion clusters (FACs) at their extremities result in perfect spherical mitotic cell bodies that undergo significant 3-dimensional (3D) displacement while being held by retraction fibers (RFs). Increasing the number of parallel fibers increases FACs and retraction fiber-driven stability, leading to reduced 3D cell body movement, metaphase plate rotations, increased interkinetochore distances, and significantly faster division times. Interestingly, interphase kite shapes on a crosshatch pattern of four fibers undergo mitosis resembling single-fiber outcomes due to rounded bodies being primarily held in position by RFs from two perpendicular suspended fibers. We develop a cortex–astral microtubule analytical model to capture the retraction fiber dependence of the metaphase plate rotations. We observe that reduced orientational stability, on single fibers, results in increased monopolar mitotic defects, while multipolar defects become dominant as the number of adhered fibers increases. We use a stochastic Monte Carlo simulation of centrosome, chromosome, and membrane interactions to explain the relationship between the observed propensity of monopolar and multipolar defects and the geometry of RFs. Overall, we establish that while bipolar mitosis is robust in fibrous environments, the nature of division errors in fibrous microenvironments is governed by interphase cell shapes and adhesion geometries.
- Suspended Micro/Nanofiber Hierarchical Scaffolds for Studying Cell MechanobiologyWang, Ji (Virginia Tech, 2015-02-11)Extracellular matrix (ECM) is a fibrous natural cell environment, possessing complicated micro-and nano- architectures, which provides signaling cues and influences cell behavior. Mimicking this three dimensional environment in vitro is a challenge in developmental and disease biology. Here, suspended multilayer hierarchical nanofiber assemblies fabricated using the non-electrospinning STEP (Spinneret based Tunable Engineered Parameter) fiber manufacturing technique with controlled fiber diameter (microns to less than 100 nm), orientation and spacing in single and multiple layers are demonstrated as biological scaffolds. Hierarchical nanofiber assemblies were developed to control single cell shape (shape index from 0.15 to 0.57), nuclei shape (shape index 0.75 to 0.99) and focal adhesion cluster length (8-15 micrometer). To further investigate single cell-ECM biophysical interactions, nanofiber nets fused in crisscross patterns were manufactured to measure the "inside out" contractile forces of single mesenchymal stem cells (MSCs). The contractile forces (18-320 nano Newton) were found to scale with fiber structural stiffness (2 -100 nano Newton/micrometer). Cells were observed to shed debris on fibers, which were found to exert forces (15-20 nano Newton). Upon CO? deprivation, cells were observed to monotonically reduce cell spread area and contractile forces. During the apoptotic process, cells exerted both expansive and contractile forces. The platform developed in this study allows a wide parametric investigation of biophysical cues which influence cell behaviors with implications in tissue engineering, developmental biology, and disease biology.