Browsing by Author "Wang, Meng"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- The Integration of State Space into the Dynamic Synthesis/Design and Operational/Control Optimization of a PEMFC SystemWang, Meng (Virginia Tech, 2008-01-11)A typical approach to the synthesis/design optimization of energy systems is to only use steady state operation and high efficiency (or low total life cycle cost) at full load as the basis for the synthesis/design. Transient operation is a secondary task to be solved by system and control engineers once the synthesis/design is fixed. This thesis considers the system dynamics in the process of developing the system using a set of transient thermodynamic, kinetic, and geometric as well as physical and cost models developed and implemented for the components of a 5 kW PEMFC (Proton Exchange Membrane Fuel Cell) system. The system is composed of three subsystems: a stack subsystem (SS), a fuel processing subsystem (FPS), and a work recovery and air supply subsystem (WRAS). To study the effect of control to the optimization, State Space control design is used in a looped set of optimizations. These results are compared to those resulting from a more direct optimization of the controller designs in which the gains for the controllers are part of the decision variable set for the overall optimization. Then, dynamic optimization results are obtained and compared with steady-state optimization results to illustrate the advantages of dynamic optimization. Also, a multi-level optimization technique, dynamic iterative local-global optimization (DILGO), is utilized for the optimization of the PEMFC system by separating the system into three subsystems and the results are compared with the single level optimization results, in which the whole system is optimized together.
- Measurement of the B0 lifetime and flavor-oscillation frequency using hadronic decays reconstructed in 2019-2021 Belle II dataAblikim, M.; Achasov, M. N.; Adlarson, P.; Ahmed, S.; Albrecht, M.; Amoroso, A.; An, Q.; Bai, X. H.; Bai, Y.; Bakina, O.; Ferroli, R. Baldini; Balossino, I.; Ban, Y.; Begzsuren, K.; Bennett, J.; Berger, N.; Bertani, M.; Bettoni, D.; Bianchi, F.; Biernat, J.; Bloms, J.; Bortone, A.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Calcaterra, A.; Cao, G. F.; Cao, N.; Cetin, S. A.; Chang, J. F.; Chang, W. L.; Chelkov, G.; Chen, D. Y.; Chen, G.; Chen, H. S.; Chen, M. L.; Chen, S. J.; Chen, X. R.; Chen, Y. B.; Cheng, W.; Cibinetto, G.; Cossio, F.; Cui, X. F.; Dai, H. L.; Dai, J. P.; Dai, X. C.; Dbeyssi, A.; de Boer, R. B.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Fang, J.; Fang, S. S.; Fang, Y.; Farinelli, R.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fritsch, M.; Fu, C. D.; Fu, Y.; Gao, X. L.; Gao, Y.; Gao, Y.; Gao, Y. G.; Garzia, I.; Gersabeck, E. M.; Gilman, A.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, L. M.; Gu, M. H.; Gu, S.; Gu, Y. T.; Guan, C. Y.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y. P.; Guskov, A.; Han, S.; Han, T. T.; Han, T. Z.; Hao, X. Q.; Harris, F. A.; He, K. L.; Heinsius, F. H.; Held, T.; Heng, Y. K.; Himmelreich, M.; Holtmann, T.; Hou, Y. R.; Hou, Z. L.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, L. Q.; Huang, X. T.; Huesken, N.; Hussain, T.; Andersson, W. Ikegami; Imoehl, W.; Irshad, M.; Jaeger, S.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, H. B.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, S.; Jin, Y.; Johansson, T.; Kalantar-Nayestanaki, N.; Kang, X. S.; Kappert, R.; Kavatsyuk, M.; Ke, B. C.; Keshk, I. K.; Khoukaz, A.; Kiese, P.; Kiuchi, R.; Kliemt, R.; Koch, L.; Kolcu, O. B.; Kopf, B.; Kuemmel, M.; Kuessner, M.; Kupsc, A.; Kurth, M. G.; Kuehn, W.; Lane, J. J.; Lange, J. S.; Larin, P.; Lavezzi, L.; Leithoff, H.; Lellmann, M.; Lenz, T.; Li, C.; Li, C. H.; Li, Cheng; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, H. J.; Li, J. L.; Li, J. Q.; Li, Ke; Li, L. K.; Li, Lei; Li, P. L.; Li, P. R.; Li, W. D.; Li, W. G.; Li, X. H.; Li, X. L.; Li, Z. B.; Li, Z. Y.; Liang, H.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, L. Z.; Libby, J.; Lin, C. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, D. Y.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. M.; Liu, Huanhuan; Liu, Huihui; Liu, J. B.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, Ke; Liu, L.; Liu, L. Y.; Liu, Q.; Liu, S. B.; Liu, T.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Long, Y. F.; Lou, X. C.; Lu, H. J.; Lu, J. D.; Lu, J. G.; Lu, X. L.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, P. W.; Luo, T.; Luo, X. L.; Lusso, S.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, R. Q.; Ma, R. T.; Ma, X. N.; Ma, X. X.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Maldaner, S.; Malde, S.; Malik, Q. A.; Mangoni, A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Meng, Z. X.; Messchendorp, J. G.; Mezzadri, G.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Muchnoi, N. Yu; Muramatsu, H.; Nakhoul, S.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Pan, Y.; Papenbrock, M.; Pathak, A.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Pitka, A.; Poling, R.; Prasad, V.; Qi, H.; Qi, M.; Qi, T. Y.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, X. P.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Qu, S. Q.; Rashid, K. H.; Ravindran, K.; Redmer, C. F.; Rivetti, A.; Rodin, V.; Rolo, M.; Rong, G.; Rosner, Ch; Rump, M.; Sarantsev, A.; Savrie, M.; Schelhaas, Y.; Schnier, C.; Schoenning, K.; Shan, W.; Shan, X. Y.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Shi, H. C.; Shi, R. S.; Shi, X.; Shi, X. D.; Song, J. J.; Song, Q. Q.; Song, Y. X.; Sosio, S.; Spataro, S.; Sui, F. F.; Sun, G. X.; Sun, J. F.; Sun, L.; Sun, S. S.; Sun, T.; Sun, W. Y.; Sun, Y. J.; Sun, Y. K.; Sun, Y. Z.; Sun, Z. T.; Tan, Y. X.; Tang, C. J.; Tang, G. Y.; Thoren, V.; Tsednee, B.; Uman, I.; Wang, B.; Wang, B. L.; Wang, C. W.; Wang, D. Y.; Wang, H. P.; Wang, K.; Wang, L. L.; Wang, M.; Wang, M. Z.; Wang, Meng; Wang, W. P.; Wang, X.; Wang, X. F.; Wang, X. L.; Wang, Y.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. Y.; Wang, Ziyi; Wang, Zongyuan; Weber, T.; Wei, D. H.; Weidenkaff, P.; Weidner, F.; Wen, H. W.; Wen, S. P.; White, D. J.; Wiedner, U.; Wilkinson, G.; Wolke, M.; Wollenberg, L.; Wu, J. F.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xiao, S. Y.; Xiao, Y. J.; Xiao, Z. J.; Xie, Y. G.; Xie, Y. H.; Xing, T. Y.; Xiong, X. A.; Xu, G. F.; Xu, J. J.; Xu, Q. J.; Xu, W.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, R. X.; Yang, S. L.; Yang, Y. H.; Yang, Y. X.; Yang, Yifan; Yang, Zhi; Ye, M.; Ye, M. H.; Yin, J. H.; You, Z. Y.; Yu, B. X.; Yu, C. X.; Yu, G.; Yu, J. S.; Yu, T.; Yuan, C. Z.; Yuan, W.; Yuan, X. Q.; Yuan, Y.; Yue, C. X.; Yuncu, A.; Zafar, A. A.; Zeng, Y.; Zhang, B. X.; Zhang, Guangyi; Zhang, H. H.; Zhang, H. Y.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, Jianyu; Zhang, Jiawei; Zhang, L.; Zhang, Lei; Zhang, S.; Zhang, S. F.; Zhang, T. J.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Yan; Zhang, Yao; Zhang, Yi; Zhang, Z. H.; Zhang, Z. Y.; Zhao, G.; Zhao, J.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, Y.; Zheng, Y. H.; Zhong, B.; Zhong, C.; Zhou, L. P.; Zhou, Q.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhu, A. N.; Zhu, J.; Zhu, K.; Zhu, K. J.; Zhu, S. H.; Zhu, W. J.; Zhu, X. L.; Zhu, Y. C.; Zhu, Z. A.; Zou, B. S.; Zou, J. H. (American Physical Society, 2023-05-15)We measure the B0 lifetime and flavor-oscillation frequency using B0→D(∗)-π+ decays collected by the Belle II experiment in asymmetric-energy e+e- collisions produced by the SuperKEKB collider operating at the ϒ(4S) resonance. We fit the decay-time distribution of signal decays, where the initial flavor is determined by identifying the flavor of the other B meson in the event. The results, based on 33000 signal decays reconstructed in a data sample corresponding to 190 fb-1, are τB0=(1.499±0.013±0.008) ps, Δmd=(0.516±0.008±0.005) ps-1, where the first uncertainties are statistical and the second are systematic. These results are consistent with the world-average values.
- Nested Bayesian Optimization for Computer ExperimentsWang, Yan; Wang, Meng; AlBahar, Areej; Yue, Xiaowei (IEEE, 2022-09)Computer experiments can emulate the physical systems, help computational investigations, and yield analytic solutions. They have been widely employed with many engineering applications (e.g., aerospace, automotive, energy systems). Conventional Bayesian optimization did not incorporate the nested structures in computer experiments. This article proposes a novel nested Bayesian optimization method for complex computer experiments with multistep or hierarchical characteristics. We prove the theoretical properties of nested outputs given that the distribution of nested outputs is Gaussian or non-Gaussian. The closed forms of nested expected improvement are derived. We also propose the computational algorithms for nested Bayesian optimization. Three numerical studies show that the proposed nested Bayesian optimization method outperforms the five benchmark Bayesian optimization methods that ignore the intermediate outputs of the inner computer code. The case study shows that the nested Bayesian optimization can efficiently minimize the residual stress during composite structures assembly and avoid convergence to local optima.