Browsing by Author "Wang, Xiang-Wen"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Cascading Walks Model for Human Mobility PatternsHan, Xiao-Pu; Wang, Xiang-Wen; Yan, Xiao-Yong; Wang, Bing-Hong (PLOS, 2015-04-10)Background Uncovering the mechanism behind the scaling laws and series of anomalies in human trajectories is of fundamental significance in understanding many spatio-temporal phenomena. Recently, several models, e.g. the explorations-returns model (Song et al., 2010) and the radiation model for intercity travels (Simini et al., 2012), have been proposed to study the origin of these anomalies and the prediction of human movements. However, an agent-based model that could reproduce most of empirical observations without priori is still lacking. Methodology/Principal Findings In this paper, considering the empirical findings on the correlations of move-lengths and staying time in human trips, we propose a simple model which is mainly based on the cascading processes to capture the human mobility patterns. In this model, each long-range movement activates series of shorter movements that are organized by the law of localized explorations and preferential returns in prescribed region. Conclusions/Significance Based on the numerical simulations and analytical studies, we show more than five statistical characters that are well consistent with the empirical observations, including several types of scaling anomalies and the ultraslow diffusion properties, implying the cascading processes associated with the localized exploration and preferential returns are indeed a key in the understanding of human mobility activities. Moreover, the model shows both of the diverse individual mobility and aggregated scaling displacements, bridging the micro and macro patterns in human mobility. In summary, our model successfully explains most of empirical findings and provides deeper understandings on the emergence of human mobility patterns.
- Correlations and Scaling Laws in Human MobilityWang, Xiang-Wen; Han, Xiao-Pu; Wang, Bing-Hong (PLOS, 2014-01-13)Background In recent years, several path-breaking findings on human mobility patterns point out a novel issue which is of important theoretical significance and great application prospects. The empirical analysis of the data which can reflect the real-world human mobility provides the basic cognition and verification of the theoretical models and predictive results on human mobility. One of the most noticeable findings in previous studies on human mobility is the wide-spread scaling anomalies, e.g. the power-law-like displacement distributions. Understanding the origin of these scaling anomalies is of central importance to this issue and therefore is the focus of our discussion. Methodology/Principal Findings In this paper, we empirically analyze the real-world human movements which are based on GPS records, and observe rich scaling properties in the temporal-spatial patterns as well as an abnormal transition in the speed-displacement patterns together with an evidence to the real-world traffic jams. In addition, we notice that the displacements at the population level show a significant positive correlation, indicating a cascading-like nature in human movements. Furthermore, our analysis at the individual level finds that the displacement distributions of users with stronger correlations usually are closer to the power law, suggesting a correlation between the positive correlation of the displacement series and the form of an individual's displacement distribution. Conclusions/Significance These empirical findings make connections between the two basic properties of human mobility, the scaling anomalies on displacement distributions and the positive correlations on displacement series, implying the cascading-like dynamics which is exhibited by the positive correlations would cause the emergence of scaling properties on human mobility patterns. Our findings would inspire further researches on mechanisms and predictions of human mobility.
- Online Gambling of Pure Chance: Wager Distribution, Risk Attitude, and Anomalous DiffusionWang, Xiang-Wen; Pleimling, Michel J. (Springer Nature, 2019-10-11)Online gambling sites offer many different gambling games. In this work we analyse the gambling logs of numerous solely probability-based gambling games and extract the wager and odds distributions. We find that the log-normal distribution describes the wager distribution at the aggregate level. Viewing the gamblers' net incomes as random walks, we study the mean-squared displacement of net income and related quantities and find different diffusive behaviors for different games. We discuss possible origins for the observed anomalous diffusion.