Browsing by Author "Wang, Yao"
Now showing 1 - 13 of 13
Results Per Page
Sort Options
- BRCA1 mutations attenuate super-enhancer function and chromatin looping in haploinsufficient human breast epithelial cellsZhang, Xiaowen; Wang, Yao; Chiang, Huai-Chin; Hsieh, Yuan-Pang; Lu, Chang; Park, Ben H.; Jatoi, Ismail; Jin, Victor X.; Hu, Yanfen; Li, Rong (2019-04-17)Background BRCA1-associated breast cancer originates from luminal progenitor cells. BRCA1 functions in multiple biological processes, including double-strand break repair, replication stress suppression, transcriptional regulation, and chromatin reorganization. While non-malignant cells carrying cancer-predisposing BRCA1 mutations exhibit increased genomic instability, it remains unclear whether BRCA1 haploinsufficiency affects transcription and chromatin dynamics in breast epithelial cells. Methods H3K27ac-associated super-enhancers were compared in primary breast epithelial cells from BRCA1 mutation carriers (BRCA1mut/+) and non-carriers (BRCA1+/+). Non-tumorigenic MCF10A breast epithelial cells with engineered BRCA1 haploinsufficiency were used to confirm the H3K27ac changes. The impact of BRCA1 mutations on enhancer function and enhancer-promoter looping was assessed in MCF10A cells. Results Here, we show that primary mammary epithelial cells from women with BRCA1 mutations display significant loss of H3K27ac-associated super-enhancers. These BRCA1-dependent super-enhancers are enriched with binding motifs for the GATA family. Non-tumorigenic BRCA1mut/+ MCF10A cells recapitulate the H3K27ac loss. Attenuated histone mark and enhancer activity in these BRCA1mut/+ MCF10A cells can be partially restored with wild-type BRCA1. Furthermore, chromatin conformation analysis demonstrates impaired enhancer-promoter looping in BRCA1mut/+ MCF10A cells. Conclusions H3K27ac-associated super-enhancer loss is a previously unappreciated functional deficiency in ostensibly normal BRCA1 mutation-carrying breast epithelium. Our findings offer new mechanistic insights into BRCA1 mutation-associated transcriptional and epigenetic abnormality in breast epithelial cells and tissue/cell lineage-specific tumorigenesis.
- Collaborative Design for Young Children with Autism: Design Tools and a User StudyMcCrickard, D. Scott; Abel, Troy D.; Scarpa, Angela; Wang, Yao (Department of Computer Science, Virginia Polytechnic Institute & State University, 2013-09-30)This paper provides an overview of a collaborative design effort that involves computer scientists, psychologists, and designers working together to investigate design methods to help in the creation of technology to people with cognitive disabilities. The focus of this effort was in developing techniques to help novice designers create technology interfaces to support anger management in young people with autism spectrum disorder (ASD). The primary output for designers is a card set for which each card has a claim about an anger management technique that can help young people. Design activities leveraging scenarios and personas are suggested that leverage the card set in the creation of technology interfaces. This paper introduces the card set and supporting techniques, describes a design session in an undergraduate classroom setting, and speculates about future directions for this work.
- Deletion of GPR30 Drives the Activation of Mitochondrial Uncoupling Respiration to Induce Adipose Thermogenesis in Female MiceLuo, Jing; Wang, Yao; Gilbert, Elizabeth R.; Liu, Dongmin (Frontiers, 2022-05-03)Thermogenic adipocytes possess a promising approach to combat obesity with its capability promoting energy metabolism. We previously discovered that deletion of GPR30 (GPRKO), a presumably membrane-associated estrogen receptor, protected female mice from developing obesity, glucose intolerance, and insulin resistance when challenged with a high-fat diet (HFD). In vivo, the metabolic phenotype of wild type (WT) and GPRKO female mice were measured weekly. Acute cold tolerance test was performed. Ex vivo, mitochondrial respiration of brown adipose tissue (BAT) was analyzed from diet-induced obese female mice of both genotypes. In vitro, stromal vascular fractions (SVF) were isolated for beige adipocyte differentiation to investigate the role of GPR30 in thermogenic adipocyte. Deletion of GPR30 protects female mice from hypothermia and the mitochondria in BAT are highly energetic in GPRKO animals while the WT mitochondria remain in a relatively quiescent stage. Consistently, GPR30 deficiency enhances beige adipocyte differentiation in white adipose tissue (WAT) and activates the thermogenic browning of subcutaneous WAT due to up-regulation of UCP-1, which thereby protects female mice from HFD-induced obesity. GPR30 is a negative regulator of thermogenesis, which at least partially contributes to the reduced adiposity in the GPRKO female mice. Our findings provide insight into the mechanism by which GPR30 regulates fat metabolism and adiposity in female mice exposed to excess calories, which may be instrumental in the development of new therapeutic strategies for obesity.
- Dietary Flavonoids in the Prevention of T2D: An OverviewAlkhalidy, Hana; Wang, Yao; Liu, Dongmin (MDPI, 2018-03-31)Type 2 diabetes (T2D) is a progressive metabolic disease that is increasing in prevalence globally. It is well established that insulin resistance (IR) and a progressive decline in functional β-cell mass are hallmarks of developing T2D. Obesity is a leading pathogenic factor for developing IR. Constant IR will progress to T2D when β-cells are unable to secret adequate amounts of insulin to compensate for decreased insulin sensitivity. Recently, a considerable amount of research has been devoted to identifying naturally occurring anti-diabetic compounds that are abundant in certain types of foods. Flavonoids are a group of polyphenols that have drawn great interest for their various health benefits. Results from many clinical and animal studies demonstrate that dietary intake of flavonoids might be helpful in preventing T2D, although cellular and molecular mechanisms underlying these effects are still not completely understood. This review discusses our current understanding of the pathophysiology of T2D and highlights the potential anti-diabetic effects of flavonoids and mechanisms of their actions.
- The Emerging Role of Polyphenols in the Management of Type 2 DiabetesWang, Yao; Alkhalidy, Hana; Liu, Dongmin (MDPI, 2021-01-29)Type 2 diabetes (T2D) is a fast-increasing health problem globally, and it results from insulin resistance and pancreatic β-cell dysfunction. The gastrointestinal (GI) tract is recognized as one of the major regulatory organs of glucose homeostasis that involves multiple gut hormones and microbiota. Notably, the incretin hormone glucagon-like peptide-1 (GLP-1) secreted from enteroendocrine L-cells plays a pivotal role in maintaining glucose homeostasis via eliciting pleiotropic effects, which are largely mediated via its receptor. Thus, targeting the GLP-1 signaling system is a highly attractive therapeutic strategy to treatment T2D. Polyphenols, the secondary metabolites from plants, have drawn considerable attention because of their numerous health benefits, including potential anti-diabetic effects. Although the major targets and locations for the polyphenolic compounds to exert the anti-diabetic action are still unclear, the first organ that is exposed to these compounds is the GI tract in which polyphenols could modulate enzymes and hormones. Indeed, emerging evidence has shown that polyphenols can stimulate GLP-1 secretion, indicating that these natural compounds might exert metabolic action at least partially mediated by GLP-1. This review provides an overview of nutritional regulation of GLP-1 secretion and summarizes recent studies on the roles of polyphenols in GLP-1 secretion and degradation as it relates to metabolic homeostasis. In addition, the effects of polyphenols on microbiota and microbial metabolites that could indirectly modulate GLP-1 secretion are also discussed.
- Exploring the Role of Prospective Memory in Location-Based RemindersWang, Yao (Virginia Tech, 2017-05-03)Location-based reminder systems (LBRs) are typically used to remind people to complete a to-do task at a particular location. People use their prospective memory to remember future to-do tasks. However, the current design of LBRs fails to take advantage of human prospective memory theory. In this dissertation, I propose a framework connecting human prospective memory theory with LBRs. My work applies human prospective memory into the technical design of LBRs. The goal of my work is to make the reminder work more consistently with how human memory works. Prospective memory research suggests that encoding of the location and familiarity with the location have an impact on prospective remembering. I conducted two empirical studies to test how this theoretical knowledge applies to LBRs. In one experiment, I hypothesized that if the encoding stage provides a closer match to the retrieval stage in LBRs, then location recognition and task recall should improve at retrieval time. The results indicate that providing a first-person view (street view of the desired location) at the encoding stage benefits prospective remembering the most. Prospective memory theory also suggests that the familiarity with the external cue has a significant influence on prospective remembering. In the second experiment, I hypothesized that familiarity with a location has an impact on the location recognition at the retrieval. The results show that the encoding interface is used differently for familiar and unfamiliar cities and businesses to support recognizing a target location. The findings have implications for the design of future LBRs. I designed an LBR prototype by applying these empirical research findings and conducted a usability evaluation. Future designers of LBR should consider 1) providing more support in matching the encoding stage to the eventual cue in retrieval stage and 2) involving user’s familiarity level with the places at the encoding stage to provide a better user experience. My work showed the importance of using prospective memory theory in the design of LBR systems.
- The Flavonoid Kaempferol Ameliorates Streptozotocin-Induced Diabetes by Suppressing Hepatic Glucose ProductionAlkhalidy, Hana; Moore, Will; Wang, Yao; Luo, Jing; McMillan, Ryan P.; Zhen, Wei; Zhou, Kequan; Liu, Dongmin (MDPI, 2018-09-13)In diabetes mellitus, the excessive rate of glucose production from the liver is considered a primary contributor for the development of hyperglycemia, in particular, fasting hyperglycemia. In this study, we investigated whether kaempferol, a flavonol present in several medicinal herbs and foods, can be used to ameliorate diabetes in an animal model of insulin deficiency and further explored the mechanism underlying the anti-diabetic effect of this flavonol. We demonstrate that oral administration of kaempferol (50 mg/kg/day) to streptozotocin-induced diabetic mice significantly improved hyperglycemia and reduced the incidence of overt diabetes from 100% to 77.8%. This outcome was accompanied by a reduction in hepatic glucose production and an increase in glucose oxidation in the muscle of the diabetic mice, whereas body weight, calorie intake, body composition, and plasma insulin and glucagon levels were not altered. Consistently, treatment with kaempferol restored hexokinase activity in the liver and skeletal muscle of diabetic mice while suppressed hepatic pyruvate carboxylase activity and gluconeogenesis. These results suggest that kaempferol may exert antidiabetic action via promoting glucose metabolism in skeletal muscle and inhibiting gluconeogenesis in the liver.
- GPR30 regulates diet-induced adiposity in female mice and adipogenesis in vitroWang, Aihua; Luo, Jing; Moore, William; Alkhalidy, Hana; Wu, Ling; Zhang, Jinhua; Zhen, Wei; Wang, Yao; Clegg, Deborah J.; Xu, Bin; Cheng, Zhiyong; McMillan, Ryan P.; Hulver, Matthew W.; Liu, Dongmin (Nature Publishing Group, 2016-10-04)
- Identification of a Dual-Action Small Molecule with Potent Anti-diabetic and Anti-obesity ActivityWang, Yao (Virginia Tech, 2019-11-22)Type 2 diabetes (T2D) is one of the fasting growing chronic diseases, caused by insulin resistance and pancreatic β-cell dysfunction. While over thirty medications were approved to treat T2D in the United States, less than one in four patients treated with anti-diabetic drugs achieved the glycemic target. Thus, identifying more effective anti-diabetic drugs is still needed for improving glycemic control in T2D patients. Incretins are gut hormones that possess potent insulinotropic action, which have drawn considerable attention in research and developing treatment strategy for T2D. Specifically, glucagon like peptide 1 (GLP-1), the most important incretin that is secreted from enteroendocrine L-cells in response to food ingestion, plays a vital role in maintaining glycemic homeostasis via potentiating glucose stimulated insulin secretion (GSIS) and promoting pancreatic β-cell proliferation and survival. Therefore, targeting L-cells to induce GLP-1 secretion would be an alternative strategy for treating T2D. The goal of this research was to identify low-cost and safe naturally occurring agents as a primary or adjuvant treatment for T2D. Here, I found that a small molecule, elenolic acid (EA), which was generated in our lab but is also present in mature olive and extra virgin olive oil, dose-dependently stimulated GLP-1 secretion in mouse clonal L-cells and isolated mouse ileum crypts. EA induced a rapid increase in intracellular [Ca2+]i and the production of inositol trisphosphate in L-cells, indicating that EA activates phospholipase C (PLC)-mediated signaling. Consistently, inhibition of (PLC) ablated EA-stimulated increase of [Ca2+]i and GLP-1 secretion in L-cells. In addition, EA-triggered GLP-1 secretion from L-cells was blocked by YM-254890, a Gαq inhibitor. Consistent with our in vitro study, a single dose of EA acutely stimulated GLP-1 secretion in mice, accompanied with an improved oral glucose tolerance. Chronic administration of EA restored the impaired glucose and lipid homeostasis in DIO mice, which may be partially due to promoting GLP-1 secretion and reduced hepatic gluconeogenesis. In addition, EA suppressed appetite, reduced food intake and gastric emptying rate, as well as promoted weight loss in obese mice, demonstrating that it is also an anti-obesity agent. Further, EA treatment reduced lipid absorption, and promoted hepatic fatty acid oxidation, and reversed abnormal plasma lipid profiles in DIO mice. Consistently, EA exerted potent anti-diabetic action in db/db mice, and its blood glucose-lowering effect is comparable with that of liraglutide in blood glycemic control but is better than that of metformin in this overt diabetic model. Collectively, I have identified for the first time, as to the best of our knowledge, that EA could be a dual-action compound that exerts anti-diabetic effects via activation of the GLP-1 mediated metabolic pathway and suppression of hepatic gluconeogenesis, leading to effective control on food intake, body weight gain, and glycemia in T2D mice.
- Identification of Genipin as a Potential Treatment for Type 2 DiabetesWu, Yajun; Wang, Yao; Liu, Dongmin (MDPI, 2023-01-21)The prevalence of type 2 diabetes (T2D) has been rising dramatically in many countries around the world. The main signatures of T2D are insulin resistance and dysfunction of β-cells. While there are several pharmaceutical therapies for T2D, no effective treatment is available for reversing the functional decline of pancreatic β-cells in T2D patients. It has been well recognized that glucagon-like peptide-1 (GLP-1), which is an incretin hormone secreted from intestinal L-cells, plays a vital role in regulating glycemic homeostasis via potentiating glucose-stimulated insulin secretion and promoting β-cell function. We found that genipin, a natural compound from Elli, can directly target intestinal L-cells, leading to the secretion of GLP-1. Incubation of the cells with genipin elicited a rapid increase in intracellular Ca2+. Inhibition of PLC ablated genipin-stimulated Ca2+ increase and GLP-1 secretion, suggesting that genipin-induced GLP-1 release from cells is dependent on the PLC/Ca2+ pathway. In vivo, acute administration of genipin stimulated GLP-1 secretion in mice. Chronically, treatment with genipin via oral gavage at 50 mg/kg/day for 6 weeks reversed hyperglycemia and insulin resistance in high-fat-diet (HFD)-induced obese mice. Moreover, genipin alleviated the impaired lipid metabolism and decreased lipid accumulation in the liver of obese mice. These results suggest that naturally occurring genipin might potentially be a novel agent for the treatment of T2D and diet-induced fatty liver disease.
- An olive-derived elenolic acid stimulates hormone release from L-cells and exerts potent beneficial metabolic effects in obese diabetic miceWang, Yao; Wu, Yajun; Wang, Aiping; Wang, Aihua; Alkhalidy, Hana; Helm, Richard; Zhang, Shijun; Ma, Hongguang; Zhang, Yan; Gilbert, Elizabeth R.; Xu, Bin; Liu, Dongmin (Frontiers, 2022-11-01)Insulin resistance and progressive decline in functional β-cell mass are two key factors for developing type 2 diabetes (T2D), which is largely driven by overweight and obesity, a significant obstacle for effective metabolic control in many patients with T2D. Thus, agents that simultaneously ameliorate obesity and act on multiple pathophysiological components could be more effective for treating T2D. Here, we report that elenolic acid (EA), a phytochemical, is such a dual-action agent. we show that EA dose-dependently stimulates GLP-1 secretion in mouse clonal L-cells and isolated mouse ileum crypts. In addition, EA induces L-cells to secrete peptide YY (PYY). EA induces a rapid increase in intracellular [Ca2+]i and the production of inositol trisphosphate in L-cells, indicating that EA activates phospholipase C (PLC)-mediated signaling. Consistently, inhibition of (PLC) or Gαq ablates EA-stimulated increase of [Ca2+]i and GLP-1 secretion. In vivo, a single dose of EA acutely stimulates GLP-1 and PYY secretion in mice, accompanied with an improved glucose tolerance and insulin levels. Oral administration of EA at a dose of 50 mg/kg/day for 2 weeks normalized the fasting blood glucose and restored glucose tolerance in high-fat diet-induced obese (DIO) mice to levels that were comparable to chow-fed mice. In addition, EA suppresses appetite, reduces food intake, promotes weight loss, and reverses perturbated metabolic variables in obese mice. These results suggest that EA could be a dual-action agent as an alternative or adjuvant treatment for both T2D and obesity.
- Phytochemical Isoliquiritigenin Inhibits Angiogenesis Ex Vivo and Corneal Neovascularization in MiceWang, Lingling; He, Wenxiao; Qu, Huihua; Jia, Changkai; Wang, Yao; Wang, Yiqiang; Liu, Dongmin (Hilaris, 2014-11-21)Neovascularization is often involved in many diseases and there is no effective treatment for this pathological process. In searching for potential therapies for neovascularization, we screened nineteen pre-selected small molecules isolated from herbal extracts for their possible anti-angiogenic effect in vitro and in vivo. We found that isoliquiritigenin, a chalconoid compound isolated from Chinese herb medicine licorice, potently inhibited vascular endothelial cell (EC) proliferation, migration, tube -like structure formation ex vivo. Western blot analysis shows that exposure of ECs to isoliquiritigenin inhibited extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation. In Matrigel plug assay, isoliquiritigenin effectively blocked fibroblast growth factor-induced in vivo angiogenesis in mice. Consistently, topical application of isoliquiritigenin significantly inhibited chemical injury-induced corneal neovascularization in mice. Collectively, these results suggest that isoliquiritigenin may be a low-cost and effective natural agent to treat angiogenesis-dependent diseases.
- Progression-Mediated Changes in Mitochondrial Morphology Promotes Adaptation to Hypoxic Peritoneal Conditions in Serous Ovarian CancerGrieco, Joseph P.; Allen, Mitchell E.; Perry, Justin B.; Wang, Yao; Song, Yipei; Rohani, Ali; Compton, Stephanie L. E.; Smyth, James W.; Swami, Nathan S.; Brown, David A.; Schmelz, Eva M. (2021-01-13)Ovarian cancer is the deadliest gynecological cancer in women, with a survival rate of less than 30% when the cancer has spread throughout the peritoneal cavity. Aggregation of cancer cells increases their viability and metastatic potential; however, there are limited studies that correlate these functional changes to specific phenotypic alterations. In this study, we investigated changes in mitochondrial morphology and dynamics during malignant transition using our MOSE cell model for progressive serous ovarian cancer. Mitochondrial morphology was changed with increasing malignancy from a filamentous network to single, enlarged organelles due to an imbalance of mitochondrial dynamic proteins (fusion: MFN1/OPA1, fission: DRP1/FIS1). These phenotypic alterations aided the adaptation to hypoxia through the promotion of autophagy and were accompanied by changes in the mitochondrial ultrastructure, mitochondrial membrane potential, and the regulation of reactive oxygen species (ROS) levels. The tumor-initiating cells increased mitochondrial fragmentation after aggregation and exposure to hypoxia that correlated well with our previously observed reduced growth and respiration in spheroids, suggesting that these alterations promote viability in non-permissive conditions. Our identification of such mitochondrial phenotypic changes in malignancy provides a model in which to identify targets for interventions aimed at suppressing metastases.