Browsing by Author "Wang, Zhicun"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- A Hybrid Optimization Framework with POD-based Order Reduction and Design-Space Evolution SchemeGhoman, Satyajit Sudhir (Virginia Tech, 2013-05-29)The main objective of this research is to develop an innovative multi-fidelity multi-disciplinary design, analysis and optimization suite that integrates certain solution generation codes and newly developed innovative tools to improve the overall optimization process. The research performed herein is divided into two parts: (1) the development of an MDAO framework by integration of variable fidelity physics-based computational codes, and (2) enhancements to such a framework by incorporating innovative features extending its robustness. The first part of this dissertation describes the development of a conceptual Multi-Fidelity Multi-Strategy and Multi-Disciplinary Design Optimization Environment (M3 DOE), in context of aircraft wing optimization. M3 DOE provides the user a capability to optimize configurations with a choice of (i) the level of fidelity desired, (ii) the use of a single-step or multi-step optimization strategy, and (iii) combination of a series of structural and aerodynamic analyses. The modularity of M3 DOE allows it to be a part of other inclusive optimization frameworks. The M3 DOE is demonstrated within the context of shape and sizing optimization of the wing of a Generic Business Jet aircraft. Two different optimization objectives, viz. dry weight minimization, and cruise range maximization are studied by conducting one low-fidelity and two high-fidelity optimization runs to demonstrate the application scope of M3 DOE. The second part of this dissertation describes the development of an innovative hybrid optimization framework that extends the robustness of M3 DOE by employing a proper orthogonal decomposition-based design-space order reduction scheme combined with the evolutionary algorithm technique. The POD method of extracting dominant modes from an ensemble of candidate configurations is used for the design-space order reduction. The snapshot of candidate population is updated iteratively using evolutionary algorithm technique of fitness-driven retention. This strategy capitalizes on the advantages of evolutionary algorithm as well as POD-based reduced order modeling, while overcoming the shortcomings inherent with these techniques. When linked with M3 DOE, this strategy offers a computationally efficient methodology for problems with high level of complexity and a challenging design-space. This newly developed framework is demonstrated for its robustness on a non-conventional supersonic tailless air vehicle wing shape optimization problem.
- Time-Domain Simulations of Aerodynamic Forces on Three-Dimensional Configurations, Unstable Aeroelastic Responses, and Control by Neural Network SystemsWang, Zhicun (Virginia Tech, 2004-05-06)The nonlinear interactions between aerodynamic forces and wing structures are numerically investigated as integrated dynamic systems, including structural models, aerodynamics, and control systems, in the time domain. An elastic beam model coupled with rigid-body rotation is developed for the wing structure, and the natural frequencies and mode shapes are found by the finite-element method. A general unsteady vortex-lattice method is used to provide aerodynamic forces. This method is verified by comparing the numerical solutions with the experimental results for several cases; and thereafter applied to several applications such as the inboard-wing/twin-fuselage configuration, and formation flights. The original thought that the twin fuselage could achieve two-dimensional flow on the wing by eliminating free wing tips appears to be incorrect. The numerical results show that there can be a lift increase when two or more wings fly together, compared to when they fly alone. Flutter analysis is carried out for a High-Altitude-Long-Endurance aircraft wing cantilevered from the wall of the wind tunnel, a full-span wing mounted on a free-to-roll sting at its mid-span without and with a center mass (fuselage). Numerical solutions show that the rigidity added by the wall results in a higher flutter speed for the wall-mounted semi-model than that for the full-span model. In addition, a predictive control technique based on neural networks is investigated to suppress flutter oscillations. The controller uses a neural network model to predict future plant responses to potential control signals. A search algorithm is used to select the best control input that optimizes future plant performance. The control force is assumed to be given by an actuator that can apply a distributed torque along the spanwise direction of the wing. The solutions with the wing-tip twist or the wing-tip deflection as the plant output show that the flutter oscillations are successfully suppressed with the neural network predictive control scheme.