Browsing by Author "Waterhouse, Robert M."
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- Anopheles mosquitoes reveal new principles of 3D genome organization in insectsLukyanchikova, Varvara; Nuriddinov, Miroslav; Belokopytova, Polina; Taskina, Alena; Liang, Jiangtao; Reijnders, Maarten J. M. F.; Ruzzante, Livio; Feron, Romain; Waterhouse, Robert M.; Wu, Yang; Mao, Chunhong; Tu, Zhijian Jake; Sharakhov, Igor V.; Fishman, Veniamin (Nature Portfolio, 2022-04-12)Chromosomes are hierarchically folded within cell nuclei into territories, domains and subdomains, but the functional importance and evolutionary dynamics of these hierarchies are poorly defined. Here, we comprehensively profile genome organizations of five Anopheles mosquito species and show how different levels of chromatin architecture influence each other. Patterns observed on Hi-C maps are associated with known cytological structures, epigenetic profiles, and gene expression levels. Evolutionary analysis reveals conservation of chromatin architecture within synteny blocks for tens of millions of years and enrichment of synteny breakpoints in regions with increased genomic insulation. However, in-depth analysis shows a confounding effect of gene density on both insulation and distribution of synteny breakpoints, suggesting limited causal relationship between breakpoints and regions with increased genomic insulation. At the level of individual loci, we identify specific, extremely long-ranged looping interactions, conserved for similar to 100 million years. We demonstrate that the mechanisms underlying these looping contacts differ from previously described Polycomb-dependent interactions and clustering of active chromatin.
- Brown marmorated stink bug, Halyomorpha halys (Stål), genome: putative underpinnings of polyphagy, insecticide resistance potential and biology of a top worldwide pestSparks, Michael E.; Bansal, Raman; Benoit, Joshua B.; Blackburn, Michael B.; Chao, Hsu; Chen, Mengyao; Cheng, Sammy; Childers, Christopher; Dinh, Huyen; Doddapaneni, Harsha V.; Dugan, Shannon; Elpidina, Elena N.; Farrow, David W.; Friedrich, Markus; Gibbs, Richard A.; Hall, Brantley; Han, Yi; Hardy, Richard W.; Holmes, Christopher J.; Hughes, Daniel S. T.; Ioannidis, Panagiotis; Cheatle Jarvela, Alys M.; Johnston, J. Spencer; Jones, Jeffery W.; Kronmiller, Brent A.; Kung, Faith; Lee, Sandra L.; Martynov, Alexander G.; Masterson, Patrick; Maumus, Florian; Munoz-Torres, Monica; Murali, Shwetha C.; Murphy, Terence D.; Muzny, Donna M.; Nelson, David R.; Oppert, Brenda; Panfilio, Kristen A.; Paula, Débora P.; Pick, Leslie; Poelchau, Monica F.; Qu, Jiaxin; Reding, Katie; Rhoades, Joshua H.; Rhodes, Adelaide; Richards, Stephen; Richter, Rose; Robertson, Hugh M.; Rosendale, Andrew J.; Tu, Zhijian Jake; Velamuri, Arun S.; Waterhouse, Robert M.; Weirauch, Matthew T.; Wells, Jackson T.; Werren, John H.; Worley, Kim C.; Zdobnov, Evgeny M.; Gundersen-Rindal, Dawn E. (2020-03-14)Background Halyomorpha halys (Stål), the brown marmorated stink bug, is a highly invasive insect species due in part to its exceptionally high levels of polyphagy. This species is also a nuisance due to overwintering in human-made structures. It has caused significant agricultural losses in recent years along the Atlantic seaboard of North America and in continental Europe. Genomic resources will assist with determining the molecular basis for this species’ feeding and habitat traits, defining potential targets for pest management strategies. Results Analysis of the 1.15-Gb draft genome assembly has identified a wide variety of genetic elements underpinning the biological characteristics of this formidable pest species, encompassing the roles of sensory functions, digestion, immunity, detoxification and development, all of which likely support H. halys’ capacity for invasiveness. Many of the genes identified herein have potential for biomolecular pesticide applications. Conclusions Availability of the H. halys genome sequence will be useful for the development of environmentally friendly biomolecular pesticides to be applied in concert with more traditional, synthetic chemical-based controls.
- Evolutionary superscaffolding and chromosome anchoring to improve Anopheles genome assembliesWaterhouse, Robert M.; Aganezov, Sergey; Anselmetti, Yoann; Lee, Jiyoung; Ruzzante, Livio; Reijnders, Maarten J. M. F.; Feron, Romain; Bérard, Sèverine; George, Phillip; Hahn, Matthew W.; Howell, Paul I.; Kamali, Maryam; Koren, Sergey; Lawson, Daniel; Maslen, Gareth; Peery, Ashley; Phillippy, Adam M.; Sharakhova, Maria V.; Tannier, Eric; Unger, Maria F.; Zhang, Simo V.; Alekseyev, Max A.; Besansky, Nora J.; Chauve, Cedric; Emrich, Scott J.; Sharakhov, Igor V. (2020-01-02)Background New sequencing technologies have lowered financial barriers to whole genome sequencing, but resulting assemblies are often fragmented and far from ‘finished’. Updating multi-scaffold drafts to chromosome-level status can be achieved through experimental mapping or re-sequencing efforts. Avoiding the costs associated with such approaches, comparative genomic analysis of gene order conservation (synteny) to predict scaffold neighbours (adjacencies) offers a potentially useful complementary method for improving draft assemblies. Results We evaluated and employed 3 gene synteny-based methods applied to 21 Anopheles mosquito assemblies to produce consensus sets of scaffold adjacencies. For subsets of the assemblies, we integrated these with additional supporting data to confirm and complement the synteny-based adjacencies: 6 with physical mapping data that anchor scaffolds to chromosome locations, 13 with paired-end RNA sequencing (RNAseq) data, and 3 with new assemblies based on re-scaffolding or long-read data. Our combined analyses produced 20 new superscaffolded assemblies with improved contiguities: 7 for which assignments of non-anchored scaffolds to chromosome arms span more than 75% of the assemblies, and a further 7 with chromosome anchoring including an 88% anchored Anopheles arabiensis assembly and, respectively, 73% and 84% anchored assemblies with comprehensively updated cytogenetic photomaps for Anopheles funestus and Anopheles stephensi. Conclusions Experimental data from probe mapping, RNAseq, or long-read technologies, where available, all contribute to successful upgrading of draft assemblies. Our evaluations show that gene synteny-based computational methods represent a valuable alternative or complementary approach. Our improved Anopheles reference assemblies highlight the utility of applying comparative genomics approaches to improve community genomic resources.
- Genomic analysis of two phlebotomine sand fly vectors of leishmania from the new and old WorldLabbe, Frederic; Abdeladhim, Maha; Abrudan, Jenica; Araki, Alejandra Saori; Araujo, Ricardo N.; Arensburger, Peter; Benoit, Joshua B.; Brazil, Reginaldo Pecanha; Bruno, Rafaela V.; Rivas, Gustavo Bueno da Silva D. S.; de Abreu, Vinicius Carvalho; Charamis, Jason; Coutinho-Abreu, Iliano V.; da Costa-Latge, Samara G.; Darby, Alistair; Dillon, Viv M.; Emrich, Scott J.; Fernandez-Medina, Daniela; Gontijo, Nelder Figueiredo; Flanley, Catherine M.; Gatherer, Derek; Genta, Fernando A.; Gesing, Sandra; Giraldo-Calderon, Gloria I.; Gomes, Bruno; Aguiar, Eric Roberto Guimaraes Rocha; Hamilton, James GC C.; Hamarsheh, Omar; Hawksworth, Mallory; Hendershot, Jacob M.; Hickner, Paul V.; Imler, Jean-Luc; Ioannidis, Panagiotis; Jennings, Emily C.; Kamhawi, Shaden; Karageorgiou, Charikleia; Kennedy, Ryan C.; Krueger, Andreas; Latorre-Estivalis, Jose M.; Ligoxygakis, Petros; Meireles-Filho, Antonio Carlos A.; Minx, Patrick; Miranda, Jose Carlos; Montague, Michael J.; Nowling, Ronald J.; Oliveira, Fabiano; Ortigao-Farias, Joao; Pavan, Marcio G.; Pereira, Marcos Horacio; Pitaluga, Andre Nobrega; Olmo, Roenick Proveti; Ramalho-Ortigao, Marcelo; Ribeiro, Jose MC C.; Rosendale, Andrew J.; Sant'Anna, Mauricio RV V.; Scherer, Steven E.; Secundino, Nagila FC C.; Shoue, Douglas A.; Moraes, Caroline da Silva D. S.; Gesto, Joao Silveira Moledo; Souza, Nataly Araujo; Syed, Zainulabueddin; Tadros, Samuel; Teles-de-Freitas, Rayane; Telleria, Erich L.; Tomlinson, Chad; Traub-Cseko, Yara M.; Marques, Joao Trindade; Tu, Zhijian; Unger, Maria F.; Valenzuela, Jesus; Ferreira, Flavia; de Oliveira, Karla PV V.; Vigoder, Felipe M.; Vontas, John; Wang, Lihui; Weedall, Gareth D.; Zhioua, Elyes; Richards, Stephen; Warren, Wesley C.; Waterhouse, Robert M.; Dillon, Rod J.; McDowell, Mary Ann (Public Library of Science, 2023-04-12)Phlebotomine sand flies are of global significance as important vectors of human disease, transmitting bacterial, viral, and protozoan pathogens, including the kinetoplastid parasites of the genus Leishmania, the causative agents of devastating diseases collectively termed leishmaniasis. More than 40 pathogenic Leishmania species are transmitted to humans by approximately 35 sand fly species in 98 countries with hundreds of millions of people at risk around the world. No approved efficacious vaccine exists for leishmaniasis and available therapeutic drugs are either toxic and/or expensive, or the parasites are becoming resistant to the more recently developed drugs. Therefore, sand fly and/or reservoir control are currently the most effective strategies to break transmission. To better understand the biology of sand flies, including the mechanisms involved in their vectorial capacity, insecticide resistance, and population structures we sequenced the genomes of two geographically widespread and important sand fly vector species: Phlebotomus papatasi, a vector of Leishmania parasites that cause cutaneous leishmaniasis, (distributed in Europe, the Middle East and North Africa) and Lutzomyia longipalpis, a vector of Leishmania parasites that cause visceral leishmaniasis (distributed across Central and South America). We categorized and curated genes involved in processes important to their roles as disease vectors, including chemosensation, blood feeding, circadian rhythm, immunity, and detoxification, as well as mobile genetic elements. We also defined gene orthology and observed micro-synteny among the genomes. Finally, we present the genetic diversity and population structure of these species in their respective geographical areas. These genomes will be a foundation on which to base future efforts to prevent vector-borne transmission of Leishmania parasites.
- Genomic insights into the Ixodes scapularis tick vector of Lyme diseaseGulia-Nuss, Monika; Nuss, Andrew B.; Meyer, Jason M.; Sonenshine, Daniel E.; Roe, R. Michael; Waterhouse, Robert M.; Sattelle, David B.; de la Fuente, Jose; Ribeiro, Jose M.; Megy, Karine; Thimmapuram, Jyothi; Miller, Jason R.; Walenz, Brian P.; Koren, Sergey; Hostetler, Jessica B.; Thiagarajan, Mathangi; Joardar, Vinita S.; Hannick, Linda I.; Bidwell, Shelby; Hammond, Martin P.; Young, Sarah; Zeng, Qiandong; Abrudan, Jenica L.; Almeida, Francisca C.; Ayllon, Nieves; Bhide, Ketaki; Bissinger, Brooke W.; Bonzon-Kulichenko, Elena; Buckingham, Steven D.; Caffrey, Daniel R.; Caimano, Melissa J.; Croset, Vincent; Driscoll, Timothy; Gilbert, Don; Gillespie, Joseph J.; Giraldo-Calderon, Gloria I.; Grabowski, Jeffrey M.; Jiang, David; Khalil, Sayed M. S.; Kim, Donghun; Kocan, Katherine M.; Koci, Juraj; Kuhn, Richard J.; Kurtti, Timothy J.; Lees, Kristin; Lang, Emma G.; Kennedy, Ryan C.; Kwon, Hyeogsun; Perera, Rushika; Qi, Yumin; Radolf, Justin D.; Sakamoto, Joyce M.; Sanchez-Gracia, Alejandro; Severo, Maiara S.; Silverman, Neal; Simo, Ladislav; Tojo, Marta; Tornador, Cristian; Van Zee, Janice P.; Vazquez, Jesus; Vieira, Filipe G.; Villar, Margarita; Wespiser, Adam R.; Yang, Yunlong; Zhu, Jiwei; Arensburger, Peter; Pietrantonio, Patricia V.; Barker, Stephen C.; Shao, Renfu; Zdobnov, Evgeny M.; Hauser, Frank; Grimmelikhuijzen, Cornelis J. P.; Park, Yoonseong; Rozas, Julio; Benton, Richard; Pedra, Joao H. F.; Nelson, David R.; Unger, Maria F.; Tubio, Jose M. C.; Tu, Zhijian Jake; Robertson, Hugh M.; Shumway, Martin; Sutton, Granger; Wortman, Jennifer R.; Lawson, Daniel; Wikel, Stephen K.; Nene, Vishvanath M.; Fraser, Claire M.; Collins, Frank H.; Birren, Bruce; Nelson, Karen E.; Caler, Elisabet; Hill, Catherine A. (Springer Nature, 2016-02)Ticks transmit more pathogens to humans and animals than any other arthropod. We describe the 2.1 Gbp nuclear genome of the tick, Ixodes scapularis (Say), which vectors pathogens that cause Lyme disease, human granulocytic anaplasmosis, babesiosis and other diseases. The large genome reflects accumulation of repetitive DNA, new lineages of retro-transposons, and gene architecture patterns resembling ancient metazoans rather than pancrustaceans. Annotation of scaffolds representing similar to 57% of the genome, reveals 20,486 protein-coding genes and expansions of gene families associated with tick-host interactions. We report insights from genome analyses into parasitic processes unique to ticks, including host 'questing', prolonged feeding, cuticle synthesis, blood meal concentration, novel methods of haemoglobin digestion, haem detoxification, vitellogenesis and prolonged off-host survival. We identify proteins associated with the agent of human granulocytic anaplasmosis, an emerging disease, and the encephalitis-causing Langat virus, and a population structure correlated to life-history traits and transmission of the Lyme disease agent.
- Genus-Wide Characterization of Bumblebee Genomes Provides Insights into Their Evolution and Variation in Ecological and Behavioral TraitsSun, Cheng; Huang, Jiaxing; Wang, Yun; Zhao, Xiaomeng; Su, Long; Thomas, Gregg W. C.; Zhao, Mengya; Zhang, Xingtan; Jungreis, Irwin; Kellis, Manolis; Vicario, Saverio; Sharakhov, Igor V.; Bondarenko, Semen M.; Hasselmann, Martin; Kim, Chang N.; Paten, Benedict; Penso-Dolfin, Luca; Wang, Li; Chang, Yuxiao; Gao, Qiang; Ma, Ling; Ma, Lina; Zhang, Zhang; Zhang, Hongbo; Zhang, Huahao; Ruzzante, Livio; Robertson, Hugh M.; Zhu, Yihui; Liu, Yanjie; Yang, Huipeng; Ding, Lele; Wang, Quangui; Ma, Dongna; Xu, Weilin; Liang, Cheng; Itgen, Michael W.; Mee, Lauren; Cao, Gang; Zhang, Ze; Sadd, Ben M.; Hahn, Matthew W.; Schaack, Sarah; Barribeau, Seth M.; Williams, Paul H.; Waterhouse, Robert M.; Mueller, Rachel Lockridge (Oxford University Press, 2021-02-01)Bumblebees are a diverse group of globally important pollinators in natural ecosystems and for agricultural food production. With both eusocial and solitary life-cycle phases, and some social parasite species, they are especially interesting models to understand social evolution, behavior, and ecology. Reports of many species in decline point to pathogen transmission, habitat loss, pesticide usage, and global climate change, as interconnected causes. These threats to bumblebee diversity make our reliance on a handful of well-studied species for agricultural pollination particularly precarious. To broadly sample bumblebee genomic and phenotypic diversity, we de novo sequenced and assembled the genomes of 17 species, representing all 15 subgenera, producing the first genus-wide quantification of genetic and genomic variation potentially underlying key ecological and behavioral traits. The species phylogeny resolves subgenera relationships, whereas incomplete lineage sorting likely drives high levels of gene tree discordance. Five chromosome-level assemblies show a stable 18-chromosome karyotype, with major rearrangements creating 25 chromosomes in social parasites. Differential transposable element activity drives changes in genome sizes, with putative domestications of repetitive sequences influencing gene coding and regulatory potential. Dynamically evolving gene families and signatures of positive selection point to genus-wide variation in processes linked to foraging, diet and metabolism, immunity and detoxification, as well as adaptations for life at high altitudes. Our study reveals how bumblebee genes and genomes have evolved across the Bombus phylogeny and identifies variations potentially linked to key ecological and behavioral traits of these important pollinators.
- Unique features of a global human ectoparasite identified through sequencing of the bed bug genomeBenoit, Joshua B.; Adelman, Zach N.; Reinhardt, Klaus; Dolan, Amanda M.; Poelchau, Monica; Jennings, Emily C.; Szuter, Elise M.; Hagan, Richard W.; Gujar, Hemant; Shukla, Jayendra Nath; Zhu, Fang; Mohan, M.; Nelson, David R.; Rosendale, Andrew J.; Derst, Christian; Resnik, Valentina; Wernig, Sebastian; Menegazzi, Pamela; Wegener, Christian; Peschel, Nicolai; Hendershot, Jacob M.; Blenau, Wolfgang; Predel, Reinhard; Johnston, Paul R.; Ioannidis, Panagiotis; Waterhouse, Robert M.; Nauen, Ralf; Schorn, Corinna; Ott, Mark-Christoph; Maiwald, Frank; Johnston, J. Spencer; Gondhalekar, Ameya D.; Scharf, Michael E.; Peterson, Brittany F.; Raje, Kapil R.; Hottel, Benjamin A.; Armisen, David; Crumiere, Antonin Jean Johan; Refki, Peter Nagui; Santos, Maria Emilia; Sghaier, Essia; Viala, Severine; Khila, Abderrahman; Ahn, Seung-Joon; Childers, Christopher; Lee, Chien-Yueh; Lin, Han; Hughes, Daniel S. T.; Duncan, Elizabeth J.; Murali, Shwetha C.; Qu, Jiaxin; Dugan, Shannon; Lee, Sandra L.; Chao, Hsu; Dinh, Huyen; Han, Yi; Doddapaneni, Harshavardhan; Worley, Kim C.; Muzny, Donna M.; Wheeler, David; Panfilio, Kristen A.; Jentzsch, Iris M. Vargas; Vargo, Edward L.; Booth, Warren; Friedrich, Markus; Weirauch, Matthew T.; Anderson, Michelle A. E.; Jones, Jeffery W.; Mittapalli, Omprakash; Zhao, Chaoyang; Zhou, Jing-Jiang; Evans, Jay D.; Attardo, Geoffrey M.; Robertson, Hugh M.; Zdobnov, Evgeny M.; Ribeiro, Jose M. C.; Gibbs, Richard A.; Werren, John H.; Palli, Subba R.; Schal, Coby; Richards, Stephen (Nature, 2016-02-02)The bed bug, Cimex lectularius, has re-established itself as a ubiquitous human ectoparasite throughout much of the world during the past two decades. This global resurgence is likely linked to increased international travel and commerce in addition to widespread insecticide resistance. Analyses of the C. lectularius sequenced genome (650Mb) and 14,220 predicted protein-coding genes provide a comprehensive representation of genes that are linked to traumatic insemination, a reduced chemosensory repertoire of genes related to obligate hematophagy, host–symbiont interactions, and several mechanisms of insecticide resistance. In addition, we document the presence of multiple putative lateral gene transfer events. Genome sequencing and annotation establish a solid foundation for future research on mechanisms of insecticide resistance, human–bed bug and symbiont–bed bug associations, and unique features of bed bug biology that contribute to the unprecedented success of C. lectularius as a human ectoparasite